a. crystallographic data and modifications of isotactic

G. Properties of Typical Mainly Isotactic. Poly(propylenes). V-26 ..... Electrical Properties: Conductivity61. Electric field .... Materials) Standards. b Refs. 64,66,99.
757KB taille 16 téléchargements 541 vues
P h y s i c a l

C o n s t a n t s

o f

P o l y ( p r o p y l e n e ) *

F e n g B a i , F u m i n g L i , B r e t H . C a l h o u n , R o d e r i c P. Q u i r k , S t e p h e n Z . D . C h e n g The Maurice Morton Institute of Polymer Science, University of Akron, Akron, O H 4325-3909, USA A. Crystal lographic Data and Modifications of Isotactic Polypropylenes B. Crystal lographic Data and Modifications of Syndiotactic Polypropylenes C. Dimensions of Poly(propylene) Molecules D. Crystallinity and Crystallization Kinetics E. Equilibrium Thermodynamic Properties F. Other General Properties G. Properties of Typical Mainly Isotactic Poly(propylenes)

H. Properties of some Commercial Poly(propylene) Grades I. Mechanical Properties of Poly(propylene) Homopolymers J. Mechanical Properties of Poly(propylene) Random Copolymers K. Mechanical Properties of Poly(propylene) Impact Copolymers L. References

V-21 V-21 V-22 V-22 V-23 V-24

V-26 V-27 V-28 V-28 V-28

V-26

A. CRYSTALLOGRAPHIC DATA AND MODIFICATIONS OF ISOTACTIC POLYPROPYLENES Lattice dimensions (nm) Stereoisomeric form Isotactic

Crystal system Monoclinica Monoclinicai Monoclinica2 Hexagonal P Hexagonal Pi Hexagonal p 2 Triclincy

Space group C2/C C2/C P2i/C

a

b

c

0.665 0.666 0.666 1.274 0.636 1.908 0.654

2.096 2.078 2.078

0.650 0.6495 0.6495 0.635 0.635 0.649 0.650

2.14

a, /?, or y (3 = 9933° £ = 99.62° /3 = 99.62° 7=120° 7=120° 7=120° a = 89° (3 = 99.6° 7 = 99°

Number of chains per unit cell 4 4 4 9 9 9 2

Quenched "smectic" B.

Molecular conformation Helix(3/1) (TG)3 Helix(3/1) (TG)3 Helix(3/1) (TG)3

Crystal density (g/cm3) 0.936 0.946 0.946 0.921 0.921 0.922 0.954

Helix(3/1) (TG)3

Refs. 1 2-4 2-4 5,6 7 2,8 9 1,10-13

CRYSTALLOGRAPHIC DATA AND MODIFICATIONS OF SYNDIOTACTIC POLYPROPYLENES Lattice dimensions (nm)

Stereoisomeric form Syndiotactic

Crystal system

Space group

Orthorhombic C222i observed in fibers Orthorhombic Ibca high temp, form Orthorhombic low temp, form Triclinic Pl

a

Molecular conformation

Crystal density (g/cm3)

Refs.

b

c 0.740

2

Helix(4/1) (T2G2)2

0.90

14-16

1.450

0.580 or 0.560 1.120

0.740

2

0.90

17-19

0.522

1.117

0.506

2

0.945

20-22

0.572

0.764

1.16

Helix(4/1) (T 262)2 Planar Zigzag T6G2T2G2

0.939

23

1.450

* Based on a table in the third edition, by R. P. Quirk and M. A. A. Alsamarraie, The Maurice Morton Institute of Polymer Science, University of Akron, Akron, Ohio.

a, p, or y

Number of chains per unit cell

« = 73.1° /3 = 88.8° 7=112.0°

1

C.

DIMENSIONS OF POLY(PROPYLENE) MOLECULES*

Effect of Molecular Weight on Radius of Gyration" PPD matrix* Method of Crystallization

PPH matrix M w ( x 103)

Rapidly quenched

— M w ( x 103)

M^fMn

34 140 340 575 1540 34 140 340 575 1540 34 140 340 575 1540

2.52 1.68 2.02 1.56 1.48 2.52 1.68 2.02 1.56 1.48 2.52 1.68 2.02 1.56 1.48

46 46 56 105 114 46 46 56 105 114 46 46 56 105 114

Rapidly quenched from melt and subsequently annealed at 137°C(410.2K) Isothermally crystallized at 139°C(412.2K)

(S2) 1J2 f (nm) 18.0 18.0 25.5 32.0 50.3 18.0 19.0 26.5 34.7 51.4 23.5 23.5 29.0 36.8 58.0

11.3 13.9 17.9 25.6 41.3 11.3 14.7 18.6 27.8 42.3 14.8 18.1 21.8 29.6 47.7

a Measured by neutron scattering. Polymer >97% isotactic; Ref. 26. * Deutrated poly(propylene). t ^y 2 ^ 1/2 anc j (s2) 1J2 are the z-average and weight-average values, respectively, of the radius of gyration of the molecule. * Innm/Cg/mol)1/2.

Neutron

Scattering

Measurements

(Si)1J2ZM1J2J Method of crystallization

Melt

Crystalline

Rapidly quenched Isothermally crystallized at 139°C (412.2 K) Rapidly quenched from melt and subsequently annealed at 137°C (410.2 K)

0.035 0.035 0.035

0.034 0.038 0.036

HS2) 1J2 is the weight-average value of the radius of gyration of the molecule; values are in nm/(g/mol)1/2. For further details and analysis, see Refs. 27-30. Neutron

D.

Scattering

See Refs. 2 4 - 3 0 .

CRYSTALLINITY A N D C R Y S T A L L I Z A T I O N KINETICS

Crystallinity

and Melting

Point of Samples

from Multiple

Solvent

Solubility of fractions in boiling solvents Soluble in

n-Octane 2-Ethylhexane w-Heptane rc-Hexane /z-Pentane a b

Fractionation1

Insoluble in

Tm (0C)

Wide angle X-ray crystallinity (%)

Trichloroethylene rc-Octane 2-Ethylhexane w-Heptane w-Hexane rc-Pentane Diethyl ether

176 (449.2)* 174-175 (447.2-448.2) 174-175 (447.2-448.2) 168-170 (441.2-443.2) 147-159(420.2-432.2) 110-135 (383.2-408.2) 106-114(379.2-387.2)

75-85 65-85 60-66 52-64 41-54 25-37 15-27

Refs. 31,32. Values in parenthesis indicate temperature in kelvin.

* See also corresponding table in this Handbook, and Refs. 24,25.

(S2) 1J2 f (nm)

(S2) lJ2/MxJ2\ 0.061 0.037 0.031 0.034 0.039 0.061 0.039 0.032 0.037 0.040 0.080 0.048 0.037 0.039 0.038

Crystallinities and Melting Temperatures of Mixtures of Amorphous" and lsotactic Poly(propylene)bc

Effect of Isotacticity Temperature^

on

Equilibrium

Equilibrium melting temperature (0C)

Crystallinity lsotactic fraction (%)

Calculated

Measured

Melting temperature ( 0 C)

67.7 60.3 49.8 40.2

174 (447.2) d 173 (446.2) 172-173 (445.3-446.2) 171-172(444.2-445.2)

Sample 100 87.5 75.8 60 a b c d

67.2 59.3 51.4 40.6

Ether extract. 2-Ethylhexane extraction residues. Refs. 33,34. Values in parenthesis indicate temperature in kelvin.

a b

Crystallinity in lsotactic Poly(propylenes)a Sample .

1. 2. 3. 4. a

Description and condition Heptane extract of crude polypropylene, "amorphous", highly atactic lsotactic, water quenched Same as 2, followed by annealing at 1050C for 1 hr Same as 2, followed by annealing at 1600C for 1/2 hr

Crystalline weight fraction 0.14 0.31 0.43

1. 2. 3. 4. 5. a

Mw Mw Mw Mw Mw

= = = = =

202000, Mw/Mn 159000, MW/Mn 189000, Mw/Mn 209000, M w /M n 190000, Mw/Mn

= 2.6, lsotacticity = 0.988 = 2.3, lsotacticity = 0.978 = 3.0, lsotacticity = 0.953 = 1.8, lsotacticity = 0.882 = 1.6, lsotacticity = 0.787

Mw Mw Mw Mw Mw

= 202000, Mw/Mn = 159000, M w /M n = 189000, Mw/Mn = 209000, Mw/Mn = 190000, Mw/Mn

= = = = =

2.6, Isotacticity = 0.988 2.3, Isotacticity = 0.978 3.0, Isotacticity = 0.953 1.8, Isotacticity = 0.882 1.6, Isotacticity = 0.787

183.8 (457.0)^ 182.8 (456.0) 180.2 (453.4) 173.0 (446.2) 163.0(436.2)

Ref. 37. Values in parenthesis indicate temperature in kelvin.

Syndiotactic poly(propylene) Equilibrium melting temperature is critically dependent upon the tacticity of the samples. For a sample with 95% of [r], 92% of [rr], and 86% of [rrr], and molecular weight higher than 40000, for example, the equilibrium melting temperature is 1600C (433.2K) (53,54). For a 99% dyad sample, an actual melting temperature of 163°C (436.2 K) can be observed (55). Equilibrium Enthalpy of Fusion, A Hf Isotactic poly(propylene) 8.7 ± 1.6kJ/mol (56) [reported data ranging from 2.65kJ/mol to 10.94 kJ/mol; for a detailed discussion see Ref. 56].

Effect of lsotacticity on Crystallinity61

Description and condition

Description and condition

0.65

Ref. 35,36.

Sample

1. 2. 3. 4. 5.

Melting

Crystalline weight fraction 0.42-0.75 0.40-0.75 0.38-0.60 0.30-0.45 0.20-0.25

Syndiotactic poly(propylene) Equilibrium enthalpy of fusion is determined for samples with 95% of [r], 92% of [rr], and 86% of [rrr], and molecular weight higher than 40000, and is 8.0kJ/mol (53). Equilibrium Entropy of Fusion, ASf

Isotactic poly(propylene) 18.9 ± 3.5 J/K/mol (56). Syndiotactic poly(propylene) No data is available.

Ref. 37.

Crystallization Kinetics See Table "Rate of Crystallization of Polymers" and Refs. 38-49 for isotactic poly(propylene), and Refs. 50-52 for syndiotactic poly(propylene). E. EQUILIBRIUM THERMODYNAMIC PROPERTIES

Equilibrium Melting Temperature/ Tm Isotactic poly(propylene) 187.5°C (460.7 K) for the crystal with an infinite size [reported data ranging from 183°C-220°C (456-493 K); for a detailed discussion, see Ref. 34]. It is also critically dependent upon the isotacticity in crystalline samples.

Glass Transition Temperature, Fg Isotactic poly(propylene) -3.2°C (270K) (56). The agreement of Tg values from various experimental methods [e.g., dilatometry, dynamic mechanical measurements (at low frequency), heat capacity and NMR (narrowing of line width)] is not very good, but ranges from about — 30 to + 200C. The glass transition temperature depends on thermal history (may also be tacticity) of the sample (5761). Activation energy, 117-152kJ/mol (57). Syndiotactic poly(propylene) May be close to the glass transition temperature of isotactic poly(propylene). Heat Capacity, C p (J/K/mol) See "Thermodynamic Properties" in this Handbook, and Ref. 62. References page V- 28

F. OTHER GENERAL PROPERTIES

lsotactic poly(propylene) in the liquid The amorphous liquid heat capacities above Tg are given in J/K/mol [±2.5% (RMS)] Cp = 0.151291 T + 42.956

Coefficients of Thermal Expansion (ASTM D 696) (K (Refs. 64-66) From - 300C (243.2K) to 0°C (273.2K) From 00C (273.2K) to 300C (303.2K) From 300C (303.2 K) to 600C (333.2K)

lsotactic poly(propylene) in the solid The heat capacities in the solid state are separately fitted to 100% crystalline in various temperature ranges, all in J/K/mol: 10-100K [±0.4% (RMS)]: Cp = exp[0.241028(ln T)3 - 3.01364(ln T)2 +13.5529(In T) -18.7621] 80-250K [±0.8% (RMS)]: Cp = exp[0.121683(ln T)3 - 1.90162(ln T)2 +10.727(In D-17.6875] 230-350 K [±1.7% (RMS)]: Cp = 1.5912 x 106 T2 + 0.3837 T - 64.551

Density at 25°C (298.2 K) (Mg/m3) = (g/cm3). See also Section G. Isotactic Crystalline 0.932-0.943 Amorphous (from extrapolation 0.850-0.854 of data above melting point) "Smectic" form 0.916 Syndiotactic Crystalline 0.989-0.91 Amorphous (from extrapolation 0.856 of data above melting point)

The 0% crystalline amorphous state heat capacities in various temperature ranges, all in J/K/mol. 10-60 K [±1.0% (RMS)]: Cp = exp[0.327068(ln T)3 - 3.688(ln T)2 +14.7469(In T) -18.4281] 50-180K [±0.7% (RMS)]: Cp = exp[0.00742669(ln T)3 -0.189318(ln T)2 +2.10843(In T) -3.0699] 160-260K[±l.l% (RMS)]: Cp = exp[0.0727139(ln T)3 -0.711627(ln T)2 +2.31907(InT)+ 0.77926]

Dielectric Constant See Section G.

Electrical Properties: Conductivity61 Electric field (kV/cm)

Syndiotactic poly(propylene) No data is available.

8.5 10.5

Heat Capacity Data in the Crystalline and Amorphous lsotactic Poly(propylene) Cp (J/K/mol) Temperature (K) 50 100 150 200 250 300 350

24

Crystalline

Amorphous

13.00 26.51 37.68 47.47 56.53 70.39 82.12

15.22 28.21 39.53 50.53 61.95 84.11 109.2

Refs. 53 53 53 53 53 53 53

Heat Capacity Changes at Glass Transition Temperatures (J/K/mol)

lsotactic poly(propylene) 19.2J/K/mol at (270K) (63).

6.5 x 10" 5 10.5 x IO"5 14.5 x 10" 3

-3.2°C

48 144

a

Conductivity at 72° C (mhos/cm)

75 45 78 50.5 81.2 39.7 78 50.5 78 81.2 39.7 78 50.5

I x 10~18 3.2 xl0~ 1 6 7.4 x 10 ~17 2.3 XlO- 18 1 x 10 - 18 2 XlO" 16 IxIO-16 2.2 xl0~ 1 8 1 x 10"18 3.2xl0~ 1 8 2.3 xlO" 1 8 1 x 10"14 1 x 10"14 2.8 XlO" 18 2 xlO" 1 8

G Values for Radiation Crosslinking Scission G(Breaks) M a x i m u m a n d M i n i m u m Values

G(c.L)

G(breaks) Maximum Minimum

Residual Entropy of the Glassy State at OK S0 (J/K/mol)Atactic Isotactic poly(propylene) 5.2 J/K/mol (58). Isotactic Isotactic a

Refs. 67 68 68 69 69 70 70 69 69 71 69 70 70 69 69

See also Section G.

Syndiotactic poly(propylene) May be close to that of isotactic poly(propylene).

Syndiotactic poly(propylene) No data is available.

Crystallinity (%)

Ref. 72.

film flake

0.24 0.21 0.27

0.10 0.10 0.10

and

Chain

G(c.l.) Maximum

Minimum

0.27 0.14 0.18

0.115 0.069 0.068

Far Infrared. See Ref. 88.

At Room Temperature and in Vacuum G(c.l.)

G(breaks)

Measured by

Solubility

Elasticity

Solubility or viscosity

Atactic Isotactic

0.12-0.27 0.07-0.25 0.6

0.6-1.3

0.10-0.24 0.10-0.24 0.9 5.0

a

Mechanical Properties: Elongation at Break See Sections G and H Hardness, Shore D See Sections G and H. Impact Strength, Izod See Sections G and H.

Ref. 72.

Low Temperature Brittleness See Sections G and H. G-Values in Terms of Radiolytic Gas Y i e l d s '

Irradiation T (0C)

Gas Atactic

H2 CH 4 H2 CH 4 H2 CH 4

Isotactic

a

G (gas)

25 25 -196 -196 25 25

2.34 0.095 2.55 0.058 2.78 0.072

Ref. 72.

Ignition Limiting Indices'7 650° C (923.2 K)

Molecular weight ( x 10 3 )

Melt index (2300C, 2.16 kg)

142 180 220 292 358

22.8 7.3 3.5 1.2 0.39

Molecular Parameters of Typical Poly(propylenes) (64)

600° C (873.2 K)

2.8±0.1

Melt Index (ASTM Method D J238-57T)

550° C (823.3 K)

3.5 ± 0 . 1

5.7±0.1

a

This method (ASTM D2803-70) is defined as the minimum volume of oxygen required for ignition to occur; Ref. 73.

Number of double bonds per 1000 C atoms Type of unsaturation Mw Mn Mw/Mn

pe

a

Pipes and sheets

Melt flow rates [ASTM: D 1238] (g/lOmin) 0.5 1.5 2 4 12 12 20 20 35 40 70 100

Flexural modulus [D 790] (MPa)

Izod impact [D 256] (J/m)

1585 (230)* 1480 (215) 1790(260) 1720 (250) 1655 (240) 1895 (295) 1720 (250) 2000(290) 1310(190) 1895 (275) 1515 (220) 1585 (230)

160 (3.0)c 70 (1.3) 140(2.6) 43 (0.8) 27 (0.5) 32 (0.6) 32 (0.6) 32(0.6) 32(0.6) 32 (0.6)

Heat deflection temp. 66 psi [D 648] (0C) 93 (366.2)J 87 (360.2) 110(383.2) 97 (370.2) 99 (372.2) 118 (391.2) 100 (373.2) 124(397.2) 90(363.2) 121 (394.2) 90 (363.2)

Hardness [D 785] (Rockwell R) 95 100 99 97 105 104 104 98 100

Ref. 109. Values in parenthesis in this column indicate Flexural modulus in K psi. Values in parenthesis in this column indicate Izod impact in ft-lb/in. Values in parenthesis in this column indicate temperature in kelvin.

References page V- 28

J.

MECHANICAL PROPERTIES OF POLY(PROPYLENE) RANDOM COPOLYMERS*

Melt flow rates [ASTM: D 1238] (g/lOmin)

Type Sheet extrusion Sheet extrusion Sheet extrusion Film extrusion Inj. molding, film, coextrusion Film extrusion Inj. molding, film, coextrusion Inj. molding, film, coextrusion Inj. molding, film, coextrusion Rapid injection molding Rapid injection molding Rapid injection molding

Flexural modulus [D 790] (MPa)

1 2.5 3 3 6 6 7 10 10 25 25 35

Izod impact [D 256] (J/m)

965(140)* 690 (100) 1515 (220) 260 (38) 825 (120) 495 (72) 585 (85) 860 (125) 1135(165) 895 (130) 1135 (165) 1135 (165)

Heat deflection temp. 66 psi [D 648] (0C)

Hardness [D 785] (Rockwell R)

80 (1.5)c 85 (1.6) 37 (7)

90 (363.2)d 70 (343.2) 102 (375.2)

80 65 95

48 (0.9)

85 (358.2)

80

80 (1.5) 37 (0.7) 54(1.0) 37 (0.7)

65 (338.2) 85 (358.2) 91(364.2) 85 (358.2) 98 (371.2) 87 (360.2)

65 80 88 80 94 80

43 (0.8)

a

Ref. 109. * Values in parenthesis in this column indicate Flexural modulus in K psi. c Values in parenthesis in this column indicate Izod impact in ft-lb/in. d Values in parenthesis in this column indicate temperature in kelvin.

K.

M E C H A N I C A L PROPERTIES O F POLY(PROPYLENE) I M P A C T C O P O L Y M E R S *

Type Compr. Mold, pipe extrusion Sheet extrusion Sheet extrusion General purpose inj. molding General purpose inj. molding General purpose inj. molding Blush resist., inj. molding Blush resist., inj. molding Blush resist., rapid inj. molding Blush resist., rapid inj. molding Blush resist, rapid inj. molding Blush resist, rapid inj. molding Blush resist, rapid inj. molding a b c d

Melt flow rates [ASTM: D 1238] (g/lOmin) 0.5 1 2 4 4 6 11 16 20 20 30 35 50

Flexural modulus [D 790] (MPa) 1240 (180)* 860(125) 965 (140) 1310 (190) 1035 (150) 930 (135) 1000 (145) 860 (125) 965 (140) 790(115) 965 (140) 1310(190) 1170(170)

Izod impact [D 256] (J/m) 540 (10)c 650(12) 650 (12) 135 (2.5) 540 (10) 650 (12) 135 (2.5) 650 (12) 185 (3.4) 540(10) 55 (1.0) 70(1.3) 55(1.0)

Heat deflection temp. 66 psi [D 648] (0C) 90 (363.2)rf 79(352.2) 72 (345.2) 81 (354.2) 75 (348.2) 90 (363.2) 77 (350.2) 80 (353.2) 77 (350.2) 85(358.2) 80 (353.2) 90(363.2) 117(390.2)

Hardness [D 785] (Rockwell R) 75 55 61 82 65 70 72 40 67 65 80 85 90

Ref. 109. Values in parenthesis in this column indicate Flexural modulus in K psi. Values in parenthesis in this column indicate Izod impact in ft-lb/in. Values in parenthesis in this column indicate temperature in kelvin.

L.

REFERENCES 1. G. Natta, P. Corradini, Nuovo Cimento. Suppl., 15, 40 (1960). 2. A. Turner-Jones, J. M. Aizlewood, D. R. Beckett, Makromol. Chem., 75, 134 (1964). 3. D. C. Bassett, S. Block, G. J. Piermarini, J. Appl. Phys., 45, 4146 (1974). 4. Y. Chatani, Y. Ueda, H. Tadokoro, Annual Meeting of the Society of Polymer Science, Japan, Tokyo, Preprint, 1977, p. 1326. 5. H. D. Keith, F. J. Padden, Jr., N. M. Walker, H. W. Wyckoff, J. Appl. Phys., 30, 1485 (1959). 6. R. J. Samuels, R. Y. Yee, J. Polym. Sci. A-2,10, 385 (1972).

7. E. J. Addink, J. Bientema, Polymer, 2, 185 (1961). 8. A. Turner-Jones, A. J. Cobbold, J. Polym. Sci. B, 6, 539 (1968). 9. D. R. Morrow, B. A. Newman, J. Appl. Phys., 39, 4944 (1968). 10. R. L. Miller, Polymer, 1, 135 (1960). 11. J. A. Gailey, R. H. Ralston, SPE Transactions, 4, 29 (1964). 12. D. M. Gezovich, P. H. Geil, Polym. Eng. Sci., 8, 202 (1968). 13. P. Corradini, V. Petraccone, C. De Rosa, G. Guerra, Macromolecules, 19, 2699 (1986). 14. G. Natta, I. Pasquon, R Corradini, et al., Atti dell'Accademia Nazionale dei Lincei. Rendiconti, 28, 539 (1960).

15. P. Corradini, G. Natta, P. Ganis, P. A. Temussi, J. Polym. Sci. C, 16, 2477 (1967). 16. T. Seto, T. Hara, K. Tanaki, Jpn. J. Appl, Phys., 7, 31 (1968). 17. B. Lotz, A. J. Lovinger, R. E. Cais, Macromolecules, 21, 2375(1988). 18. A. J. Lovinger, B. Lotz, D. Davis, Polymer, 31, 2253 (1990). 19. A. J. Lovinger, D. Davis, B. Lotz, Macromolecules, 24, 552 (1991). 20. G. Natta, M. Peraldo, G. Allegra, Makromol. Chem., 75,215 (1964). 21. H. Tadokaro, M. Kobayashi, S. Kobayashi, K. Yasufuku, K. Mori, Rep. Prog. Polym. Phys. Japan, 9, 181 (1966). 22. Y. Chatani, H. Maruyama, K. Noguchi, et al., J. Polym. Sci. Polym. Lett., 28, 393 (1990). 23. Y. Chatani, H. Maruyama, T. Asanuma, T. Shiomura, J. Polym. Sci., Polym. Phys. Ed., 29, 1649 (1991). 24. G. D. Wignall, L. Mandelkern, C. Edwards, M. Glotin, J. Polym. Sci., Polym. Phys. Ed., 20, 245 (1982). 25. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, J. L. Koenig, "Physical Properties of Polymers", American Chemical Society, Washington DC, 1984. 26. D. G. H. Ballard, R Cheshire, G. W. Longman, J. Schelten, Polymer, 19, 379 (1978). 27. J. Schelton, D. G. H. Ballard, G. D. Wignall, G. W. Longman, W. Schmatz, Polymer, 17, 751 (1976). 28. D. Y. Yoon, P. J. Flory, Polymer, 18, 509 (1977). 29. M. Stamm, E. W. Fischer, M. Dettenmaier, Disc. Faraday Soc, 68, 263 (1979). 30. P. Parrini, F. Sebastiano, G. Messina, Makromol. Chem., 38, 27 (1960). 31. G. Natta, J. Polym. Sci., 34, 531 (1959). 32. Y. V. Kissin, "Isospecific Polymerization of Olefins with Heterogeneous Ziegler-Natta Catalysts", Springer, New York, 1985. 33. G. Natta, G. Mazzanti, O. Grespi, G. Noraglio, Chim. Ind., 39, 275 (1957). 34. B. Wunderlich, "Macromolecular Physics", Vol. 3: Crystal Melting, Academic Press, New York, 1980. 35. W. Ruland, Acta Cryst., 14, 1180 (1961). 36. B. Wunderlich, "Macromolecular Physics", Vol. 1: Crystal Structure, Morphology, Defects, Academic Press, New York, 1973. 37. S. Z. D. Cheng, J. J. Janimak, A. Zhang, E. T. Hsieh, Polymer, 32, 648 (1991). 38. B. von Falkai, H. A. Stuart, Kolloid Z., 162, 138 (1959). 39. B. von Falkai, Makromol. Chem., 41, 86 (1960). 40. F. L. Binsbergen, B. G. M. De Lange, Polymer, 11, 309 (1970). 41. A. Wlochowicz, M. Eder, Polymer, 22, 1285 (1981). 42. H. D. Keith, F. J. Padden, Jr., J. Appl. Phys., 35,1286 (1964). 43. A. J. Lovinger, J. O. Chua, C. C. Gryte, J. Polym. Sci., Polym. Phys. Ed., 15, 641 (1977). 44. L. Goldfarb, Makromol. Chem., 179, 2297 (1978). 45. E. Martuscelli, C. Silvestre, G. Abate, Polymer, 23, 229 (1982). 46. E. J. Clark, J. D. Hoffman, Macromolecules, 17, 878 (1984).

47. S. Z. D. Cheng, J. J. Janimak, A. Zhang, H. N. Cheng, Macromolecules, 23, 298 (1990). 48. J. J. Janimak, S. Z. D. Cheng, R A. Giusti, E. T. Hsieh, Macromolecules, 24, 2253 (1991). 49. J. J. Janimak, S. Z. D. Cheng, J. Polym. Eng., 10, 21 (1991). 50. R. L. Miller, E. G. Seeley, J. Polym. Sci., Polym. Phys. Ed., 20, 2297 (1982). 51. G. Balbontin, D. Dainelli, M. Galimberti, G. Paganetto, Makromol. Chem., 193, 693 (1993). 52. J. Rodriguez-Arnold, Z. Bu, S. Z. D. Cheng, E. T. Hsieh, T. W. Johnson, R. G. Geerts, S. J. Palackal, G. R. Hawley, M. B. Welch, Polymer, 36, 5194 (1994). 53. J. Rodriguez, S. Z. D. Cheng, A. J. Lovinger, E. T. Hsieh, P. Chu, T. W. Johnson, K. G. Honnell, R. G. Geerts, S. J. Palackal, G. R. Hawley, M. B. Welch, Polymer, 35, 1884(1994). 54. J. Rodriguez, S. Z. D. Cheng, Z. Bu, J. Macromol. Sci., C: Rev. Macromol. Chem. Phys., 35, 117 (1995). 55. A. J. Lovinger, B. Lotz, D. Davis, F. J. Padden, Jr., Macromolecules, 26, 3494 (1993). 56. H. Bu, S. Z. D. Cheng, B. Wunderlich, Makromol. Chem. Rapid Commun., 9, 75 (1988). 57. R. F. Boyer, in: H. F. Mark, N. M. Bikales, (Eds.), "Encyclopedia of Polymer Science and Technology", Supplement Number 2, Wiley, New York, 1977, p. 745. 58. D. L. Beck, A. A. Hiltz, J. R. Knox, SPE Trans., 3, 279 (1963). 59. W. P. Slichter, E. R. Mandell, J. Appl. Phys., 29, 1438 (1958). 60. R. F. Boyer, Plast. Polym., Part I, 41, 15 (1973); Parts II and III, p. 71; Parts I-IV published as Seventh Swinburne Award Address by the Plastics Institute, 11 Hobart Place, London. 61. S. C. Sharma, L. Mandelkern, F. C. Stehling, J. Polym. Sci., Polym. Lett., 10, 345 (1972). 62. U. Gaur, B. Wunderlich, J. Phys. Chem. Ref. Data, 10, 1051 (1981). 63. J. Grebowicz, S.-F. Lau, B. Wunderlich, J. Polym. Sci., Polym. Symp., 71, 19 (1984). 64. J. Brandrup, E. H. Immergut, (Eds.). "Polymer Handbook", 2nd ed., Wiley, New York, 1975. 65. G. Crespi and L. Luciana, in: Kirk-Othmer, (Ed.), "Encyclopedia of Chemical Technology", vol. 16, 3rd ed., Wiley, New York, 1981, p. 453. 66. H. R Frank, "Polypropylene", Gordon and Breach, New York, 1968. 67. M. Matsui, N. Murasaki, "Electrects, Charge Storage and Transport in Dielectrics", M. M. Perlman (Ed.), Electrochem. Soc. Inc., Princeton, 1972, p. 141. 68. R. A. Foss, W. Dannhauser, J. Appl. Polym. Sci., 7, 1015 (1963). 69. K. Ikezaki, T. Kaneko, T. Sakakibara, Jpn. J. Appl. Phys., 20(3), 609 (1981). 70. S. Ide, Kobunshi Kagaku, 23, 865 (1966). 71. D. K. Das Gupta, K. Joyner, J. Phys. D, 9, 2041 (1976). 72. M. Dole, "Mechanism of Chemical Effects in Irradiated Polymers", in: R. A. V. Raff, K. W. Doak, (Eds.), "Crystalline Olefin Polymers", Interscience, New York, 1965, p. 907.

73. T. Morimoto, T. Mori, S. Enomoto, J. Appl. Polym. Sci., 22, 1911 (1978). 74. J. L. Koening, "Chemical Microstructure of Polymer Chains", Wiley, New York, 1980. 75. D. W. Van Krevelen, "Properties of Polymers, Correlations with Chemical Structure", P. J. Hoftyzer, Collaborator, Elsevier, Amsterdam, 1972. 76. H. Tadokoro, T. Kitazawa, S. Nozakura, S. Murahashi, Bull. Chem. Soc. Japan, 34, 1209 (1961). 77. C. E. Schildknecht (with I. Skeist), "Polymerization Processes", vol. XXIX, Wiley, New York, 1977. 78. G. Gramsberg, Kolloid-Z., 175, 119 (1961). 79. C. Y. Liang, M. R. Lytton, C. J. Boone, J. Polym. Sci., 47, 139 (1960); ibid., 54, 523 (1961). 80. J. Boor, Jr., "Ziegler-Natta Catalysts and Polymerization", Academic Press, New York, 1979. 81. M. C. Tobin, J. Phys. Chem., 64, 216 (1960). 82. M. Peraldo, M. Farina, Chim. Ind. (Milan)., 42, 1349 (1960). 83. M. P. MacDonald, I. M. Ward, Polymer, 2, 341 (1961). 84. J. P. Luongo, J. Appl. Polym. Sci., 3, 302 (1960). 85. E. A. Youngman, J. Boor, Jr., Macromol. Rev., 2, 33 (1967). 86. R. H. Hughers, Polym. Preprints (Am. Chem. Soc. Polym. Div.), 4 (2), 697 (1963). 87. Y. V. Kissen, Adv. Polym. Sci., 15, 92 (1974). 88. G. W. Chantry, "Submillimetre Spectroscopy", Academic Press, London, 1971. 89. M. Moller, W. Ritter, H. J. Cantow, Polym. Bull., 4, 609 (1981). 90. T. Asakura, K. Omaki, S. N. Zhu, R. Chujo, Polym. J., 16 (9), 717 (1984). 91. K. J. Packer, J. M. Pope, R. R. Young, M. E. A. Cudby, J. Polym. Sci., Polym. Phys. Ed., 22, 589 (1984). 92. F. W. Wehrli, T. Wirthlin, "Interpretation of Carbon-13 NMR Spectra", Heyden and Son Ltd., 1980.

93. I. C. Randall, "Polymer Sequence Determination, Carbon13 NMR Method", Academic Press, New York, 1977. 94. R. Pino, R. Mulhaupt, in: R. P. Quirk, (Ed.), "Transition Metal Catalyzed Polymerizations, Alkenes and Dienes", vol. 4, Part A, Harwood, New York, Published for MMI Press, 1983. 95. S. Steingiser, S. P. Nemphos, M. Salame, in: Kirk-Othmer, (Ed.), "Encyclopedia of Chemical Technology", vol. 3, 3rd ed., Wiley, New York, 1978. 96. D. Jeschke, H. A. Stuart, Z. Naturforsch, 16a, 37 (1961). 97. V. Stannett, H. Yasuda, in: K. W. Doak (Ed.), "Crystalline Olefin Polymers", Part II, Wiley, New York, 1964, p. 139, p. 144. 98. Modern Plastics Encyclopedia, McGraw-Hill Book Co., Inc., New York, 1966, p. 530. 99. P. D. Ritchie Ed., "Vinyl and Allied Polymers", vol. 1, Illife, London, 1968, p. 143. 100. J. Horska, J. Stejskal, P. Kratochvil, J. Appl. Polym. Sci., 28, 3873 (1983). 101. N. M. Bikales (Ed.), "Encyclopedia of Polymer Science and Technology", vol. 12, Wiley, New York, 1985, p. 702. 102. T. H. Matim, Iron Age, 197, 88 (1966). 103. H. L. Price, SPE J., 24, 54 (1968). 104. M. P. Groenwege, J. Schnuzer, J. Smidt, C. A. F. Tuijnman, in: R. A. V. Raff, K. W. Doak (Eds.). "Crystalline Olefin Polymers", Part II, Wiley, New York. 1965, p. 798. 105. I. M. Ward, "Mechanical Properties of Solid Polymers", 2nd ed., Wiley, New York, 1983. 106. I. M. Ward (Ed.), "Developments in Oriented Polymers", Elsevier, England, 1982. 107. A. Citerri, I. M. Ward (Eds.), "Ultra-High Modulus Polymers", Elsevier, England, 1979. 108. I. M. Ward (Ed.), "Structure and Properties of Oriented Polymers", Elsevier, England, 1975. 109. International Plastics Selector, Plastics Digest, DATA Business, Englewood, CA 1994.