Bayesian approach with sparse enforcing prior for

Beam forming and Deconvolution based models. ▷ Regularization methods. ▷ Proposed Bayesian inference method. ▷ Results on simulated and real data.
8MB taille 0 téléchargements 395 vues
. Bayesian approach with sparse enforcing prior for acoustic sources localization and imaging Ali MOHAMMAD-DJAFARI Ning CHU, Nicolas GAC and Jos´e PICHERAL Laboratoire des Signaux et Syst`emes (L2S), UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11 and ´ Dept. Signaux et Syst`emes Electroniques (SSE) SUPELEC, 91192 Gif-sur-Yvette, France http://lss.supelec.free.fr Email: [email protected] http://djafari.free.fr A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

1/32

Content



Acoustic sources localization and imaging applications



Forward models



Beam forming and Deconvolution based models



Regularization methods



Proposed Bayesian inference method



Results on simulated and real data



Conclusions

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

2/32

Acoustic sources localization and imaging

Flyover meausrements at airport

Acoustic imaging of noise sources (dB)

Courtesy of National Aerospace Laboratory (NLA) Holland [Vander 2009] A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

3/32

Acoustic sources localization and imaging

Previous work developed by Renault France [Adam 2010]. Motivation: ◮

Higher spatial resolution for low frequencies.



Robust to measurement errors.



Wide dynamic range of source powers.



Fast acoustic imaging for industry application.

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

4/32

Propagation forward models



Assumptions: Ponctual sources, ideal sensors, no reverberation



Measured data: z



Unknowns: sources number K, positions P ∗ & amplitudes s∗

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

5/32

Propagation forward model

zm (f ) =

K X

am,k (p∗k , f ) s∗k (f ) + em (f )

k=1



z(f ) = A(P∗ , f ) s∗ (f ) + e(f ) ◮

am,k (p∗k , f ) =

1 rm,k

exp (−2π f τm,k ): signal propagation;

◮ A(P∗ , f ) ◮ ◮

= [am,k (p∗k , f )]M ×K : signal propagation matrix; p∗k ∈ P∗ : kth source position. Non-linear for P∗ ; Hard to jointly solve P∗ and s∗ .

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

6/32

Imaging forward model

Assumption: s∗ ⊂ s N grids s; P∗ ⊂ P discrete positions P. z(f ) = A(P∗ , f ) s∗ (f ) + e(f ) ⇓ Discretization z(f ) = A(P , f ) s (f ) + e(f ) 1 rm,n



am,n (pn , f ) =



A(P, f ) = [am,n (pn , f )]M×N : discrete propagation matrix;



s = [0, s∗1 , 0, · · · , s∗K , 0, · · · ]T : Spatially K-sparsity;



Linear for s; but under-determined due to M ≤ N.

A. Mohammad-Djafari,

exp (−2π f τm,n )

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

7/32

Beamforming and Deconvolution based methods

y = C x + σe2 1a

˜ † A|.2 ) C = (|A ◮

˜ = {˜ ˜ : M × N; A an }N : Beamforming steering matrix, A



˜n = a

an ||an ||2 :

Beamforming steering vector of A : M × N .

σe2 : Power of measurement errors e (i.i.d white noise). Linear and determined equations (C : N × N ) for source powers x. A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

8/32

Beamforming: low spatial resolution ˜ † z|.2 ] −→ y = Cx + σ 2 1a z = As −→ y = E[|A ǫ ◮

Low spatial resolution (30cm) at low frequency (2500Hz).



spatially variant PSF convolution

1.4 2

1.3

1.3 0

1.2

1.2 −2

y (m)

1.1

1.1 −4

1

1 −6

0.9

0.9 0.8

−8

0.7

−10

0.8

0.7 0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

Source power x A. Mohammad-Djafari,

0

0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Beamforming power y

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

9/32

Deconvolution methods for power propagation model 1.4 2

1.3

1.3

1.1

1

0 1.2 −2 1.1

y (m)

? =⇒

1.2

−4 1

−6

0.9

0.9 −8

0.8

0.8 0.7

0.7

−10

 y = C x + σe2 1a     b = arg min ||y − C x||22 + αF(x) x x    s.t. x ≥ 0 and sparse 0.6

0.6

−1.2

−1.2

−1

◮ ◮

−0.8

−0.6

−0.4

−0.2

0

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

Iterative: CLEAN used by [Stoica 2003], Parameter selection;

Breakthrough: Deconvolution Approach for Mapping Acoustic Sources (DAMAS) proposed by [Brooks 2005]; Sensitive ◮ Robustness: Diagonal Removal DAMAS (DR-DAMAS) [Brooks 2005]; Over suppression ◮ F (x) = ||w x||l with 0 ≤ l ≤ 1, weight vector w: ◮ l = 0: Real sparsity, but hard to solve; ◮ l = 1: Sparsity, well solved by LASSO algorithm; DAMAS with sparsity constraint (SC-DAMAS) [Yardi 2008]; ◮ α: to be tuned carefully; A. Mohammad-Djafari, Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif, 16 Octobre 2014

10/32

Deconvolution and regularization results 1.4

1.4

1.4

10

2 2 1.3

1.3

1.3

8

0 1.2

1.2

0

1.2 6

−2 1.1

1.1

1.1

−2

1

−4

y (m)

−4 1

y (m)

y (m)

4 1 2 −6

0.9

0.9

0.9

−6

0 −8

0.8

0.8

0.8 −8

0.7

−2

0.7

−10

0.7 −10

0.6

−4

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

−1.2

(a) Source powers s 1.4

−0.8

−0.6 x (m)

−0.4

−0.2

0.6

0

−1.2

(b) Beamforming y

−0.8

−0.6 x (m)

−0.4

−0.2

0

1.4 4

2

1.3

2

1.2

−1

(c) CLEAN

1.4

4

1.3

−1

1.3

1.2

0

1.2

1.1

−2

1.1

2

0 1.1

0

1

−4

y (m)

y (m)

y (m)

−2 1

1

−2

−4 0.9

0.9

0.9

−4

−6 −6

0.8

0.8

0.8 −6

−8 −8

0.7

0.7

0.7 −8

−10 0.6

−10 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

(d) DAMAS

0

0.6

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

(e) DR-DAMAS

0

−1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(f) SC-DAMAS

Deconvolution: High spatial resolution, but sensitive to errors Regularization: High spatial resolution, robust to errors, but α selection. A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

11/32

General performance of classical methods

Methods

CBF1

CLEAN

DAMAS

DR-DAMAS

SC-DAMAS

Resolutions

Low

Normal

Normal

Normal

High

Dynamic Range

Narrow

Normal

Normal

Normal

Normal

Noise

Robust

Sensitive

Sensitive

Normal

Normal

Parameter2 number

No

Required

No

No

Required

Computation

Least

Normal

Normal

Normal

High

1 2

Conventional Beamforming Parameter to be tuned

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

12/32

Improved power propagation model and sparsity

y = C x + σe2 1a −→ y = C x + σe2 1a + ξ Contribution: improve robustness using model uncertainty ξ caused by unknown effects: multi-path propagation and prior  of sparsity information   (b x, σˆ2 ) = arg min ||y − C x − σe2 1a ||22 (x,σe2 ) ,  s.t. kxk1 = β, x  0, σe2 ≥ 0

(b x, σˆ2 ) jointly estimated; Sparse solution on x ˆ sparsity parameter on total source powers kxk1 ; ◮ β: ◮ Sensitive to β A. Mohammad-Djafari, Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif, 16 Octobre 2014 ◮

13/32

Robust DAMAS with sparsity constraint (SC-RDAMAS) 1.4

1.4

[Chu et al. 2013 APACJounal] 1.4

10

2 2 1.3

1.3

1.3

8

0 1.2

1.2

0

1.2 6

−2 1.1

1.1

1.1

−2

1

−4

y (m)

1

y (m)

y (m)

4 −4

1 2

−6

0.9

0.9

0.9

−6

0 0.8

−8

0.8

0.7

−10

0.7

0.8 −8 −2

0.7 −10

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

−1.2

(a) Source powers s

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0.6

0

−1.2

(b) Beamforming y

1.4

−2

1.1

1

−2

0.9

−4

0.8

0.7

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(d) DR-DAMAS

0

−2 1.1 −4 1 −6

0.9

−8

0.7

−10

−8 0.6

−1.2

2

0.8

−10 0.6

0

−6

−8 0.7

−0.2

1.2

0

−6 0.8

−0.4

1.3 2

y (m)

1.1

y (m)

1.2

0.9

−0.6 x (m)

1.4

1.3

0

−4

−0.8

4

2

1.2

1

−1

(c) CLEAN

1.4

1.3

y (m)

−4

0.6

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

(e) SC-DAMAS

0

−12 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(f) SC-RDAMAS

Higher resolution; Robust to measurement errors; but Sensitive to sparsity parameter. A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

14/32

Bayesian approach with a sparse prior ◮

[Chu et al. 2012 JSVJournal]

Bayesian approach infers (x, θ) from y using p(x, θ|y) p(x, θ|y) ∝ p(y|x, θ 1 ) p(x|θ 2 ) | {z } | {z } Likelihood

θ = [θ 1 , θ 2 ]



P rior

p(θ) |{z}

Hyper−prior

Likelihood

y = C x + σe2 1N + ξ " # 1 p(y|x, θ 1 ) ∝ exp − 2 ky − C x − σe2 1a k2 2σξ θ 1 = [σe2 , σξ2 ] : Hyper-parameters



p(x|θ 2 ) Sparsity enforcing



p(θ) Conjugate priors

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

15/32

Sparsity enforcing prior on source powers ◮

Sparsity enforcing prior in Generalized Gaussian family p(x|θ 2 ) ∝ exp(−γ |xn |β ), θ 2 = [γ, β] 0.06

0.05

β=2.0, β=1.0, β=0.5, β=1.0,

p(x) = γβ/(Γ(β)) exp(−γ|x|β)

γ=1.0 γ=1.0 γ=1.0 γ=0.5

0.04

0.03

0.02

0.01

0 −10

−8

−6

−4

−2

0

2

4

6

8

10

β = 1 (fixed) enforces sparsity distribution: sharp peak; 0 ≤ γ ≤ 1 (to be estimated) enlarges dynamic range: long tail. ◮

p(θ): Positive priors using Jeffrey priors: p(γ) ∼ γ1 , p(σξ2 ) ∼ σ12 , p(σe2 ) ∼ σ12 , θ = [γ, σe2 , σξ2 ] ξ

A. Mohammad-Djafari,

e

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

16/32

Joint Maximum A Posteriori (JMAP)             

[Chu et al. 2012 JSVJournal]

ˆ = arg max {p(x, θ|y) ∝ p(y|x, θ 1 ) p(x|θ 2 ) p(θ)} (b x, θ) (x,θ )

= arg min {J (x, θ)} , with J (x, θ) = − ln p(x, θ|y) (x,θ ) N 1  ln σξ2 − N ln γ J (x, θ) = 2 ky − C x − σe2 1a k2 + γ kxkβ=1 +   2 2σ {z } |  ξ | {z }   {z } Sparse prior Hyper−parameter |  prior   Likelihood: data f itting    s.t. x  0, σe2 ≥ 0, σξ2 ≥ 0, γ ≥ 0; θ = [σe2 , σξ2 , γ] Advantages ◮ Super spatial resolution: sparse prior; ◮ Wide dynamic range: γ estimation; ◮ robustness to errors: σe2 , σ 2 estimations ξ Limitations ◮ Non-quadratic optimization: x and θ; ◮ High computational costs O(N 2 ): C x, N × N dimension. A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

17/32

JMAP) optimization

[Chu et al. 2012 JSVJournal]

1.4

1.4

1.4

10

2 2 1.3

1.3

1.3

8

0 1.2

1.2

0

1.2 6

−2 1.1

1.1

1.1

−2

1

−4

y (m)

1

y (m)

y (m)

4 −4

1 2

−6

0.9

0.9

0.9

−6

0 0.8

−8

0.8

0.7

−10

0.7

0.8 −8 −2

0.7 −10

0.6

−4

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

−1.2

(a) Source powers x.

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

−1.2

(b) Beamforming y

1.4

0.6 −1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(c) CLEAN .

1.4

1.4 2

2 2

1.3

1.3

1.3 0

0 1.2

0

1.2

1.1

−2

1.1

1.2 −2

−4

0.9

1.1 −4

1 −6

0.9

y (m)

1

y (m)

y (m)

−2

−4 1 −6 0.9

−6 0.8

0.8

−8

0.8

0.7

−10

0.7

−12

0.6

−8

−8 0.7

−10

−10 0.6

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

(d) DR-DAMAS.

−0.2

0

−1.2

−1

−0.8

−0.6 x (m)

−0.4

(e) SC-RDAMAS.

−0.2

0

−12 −1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(f) JMAP.

Higher resolution, robust, wide dynamics, parameter-independent, but time-consuming A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

18/32

Method comparisons

Methods

CBF

DR-DAMAS

SC-DAMAS

SC-RDAMAS

JMAP

Resolutions

Low

Normal

High

Higher

Higher

Dynamics3

Narrow

Normal

Normal

Wide

Wide

Noise

Robust

Normal

Normal

Robust

Robust

Parameter

No

No

Required

Required

No

Cost

Least

Normal

Higher

Higher

Higher

3

Dynamic range

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

19/32

Invariant convolution model of power propagation

[Chu et al.

ICA2013a]

y = C x + σe2 1a + ξ −→ y = H x + ǫ = h ∗ x + η

1.3

1.3

1.2

1.2

1.1

1.1

1

1

0.9

0.9

0.8

0.8

0.7

0.6

0.7

−1.2

−1

−0.8

−0.6

−0.4

−0.2

C: spatially variant in near-field Operation Matrix multiplication 2D invariant convolution 1D separable convolution

0

0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

H: spatially invariant in far-field

Expression4 Cx h∗x h1 ∗ h2 ∗x

Complexity O(N 2 ) O(Nh 2 N ) O(2 Nh N )

Speed gain 1 N/Nh 2 N/(2 Nh )

4 h: Nh × Nh matrix; h1 , h2 : Nh length vector; A. Mohammad-Djafari, Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

20/32

Short summary of the works z(f ) = A(P∗ , f ) s∗ (f ) + e(f ): Given z find (P∗ , , s∗ ) ⇓ Discretization z(f ) = A(P , f ) s (f ) + e(f ): Given (z, A) find s (sparse) . ⇓ Beamforming power y = C x + σe2 1a : Given (y, C) find x (sparse) by deconvolution/regularization. ⇓ Model uncertainty ξ y = C x + σe2 1a + ξ: Given (y, C) find (x, σe2 ) by proposed SC-RDAMAS. Given (y, C) find (x, σe2 , σξ2 , γ ) by proposed Bayesian JMAP. ⇓ Invariant convolution model C x ≈ h ∗ x ≈ h1 ∗ h2 ∗ x y = H x + ǫ: Given (y, C) to find (x, σǫ2 ) by proposed Bayesian JMAP: fast, but low quality ⇓ ǫ: Model errors are spatially variant noises To be continued... A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

21/32

Spatialy variant noise model and Students-t priors

[Chu et al.

ICA2013a] 1.3

1.3

1.2

1.2

1.1

1.1

1

1

0.9

0.9

0.8

0.8

0.7

0.7

0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

C: spatially variant in near-field

0.6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

H: spatially invariant in far-field

y = Hx + ǫ ◮

ǫ: Model errors are spatially variant noises: p(ǫi |νi ) = N (ǫi |0, 1/νi )



p(νi ) = G(νi |aν , bν ) ,

Non-stationary prior p(ǫ): Z p(ǫi ) = p(ǫi |νi )p(νi ) dνi = St (ǫi )

A. Mohammad-Djafari,

Commision Signaux ν etiStatistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

22/32

Sparsity enforcing via Students-t priors

[Chu et al. ICA2013a]

y = Hx + ǫ x: Sparsity enforcing prior from Student-t family (Cauchy): 0.5 Normal DE Laplace Students−t

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05



0 −6

−4

p(xj ) = A. Mohammad-Djafari,

−2

Z

0

2

4

6

p(xi |γj )p(γj ) dγj = St (xj )

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

23/32

Non stationary noise model and sparsity enforcing via Students-t priors [Chu et al. ICA2013a] y =Hx+ǫ ◮

Non stationary noise model via St p(y|x) = N (y|Hx, Σǫ ), Σǫ = diag [ν] , p(ν) =

M Y

G(νm |aγ , bγ )

m=1 ◮

Sparsity enforcing prior via St prior p(x|γ) = N (x|0,



Σ−1 γ )

Σǫ = diag [γ] p(γ) =

N Y

G(γn |aγ , bγ ) ,

n=1

Joint posterior law

N N Y Y −1 N (x|0, G(ν ) |a , b ) Σ ) G(γn |aγ , bγ ) p(x, γ, ν|y) ∝ N (y|H x , Σ−1 n ν ν ν γ {z } n=1 | | {z } n=1 Likelihood | {z } | {z } P rior Hyper−prior





Hyper−prior

JMAP could solve 3N -dimensional variables by alternate optimization JMAP is a point estimator. How to quantify estimation

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

24/32

Bayesian VBA via Students-t priors

[Chu et al. ICA2013a]

 To find x, θ = [γ, ν] from y    (Z )    q(x, θ)   p(x, θ|y) ≈ qˆ(x, θ) = arg min q(x, θ) ln d(x, θ) p(x, θ|y) q(x,θ ) (x,θ )  {z } |    Minimizing K-L divergence     qˆ(x, θ) = qˆ1 (x) qˆ2 (γ) qˆ3 (ν), ◮

Analytical solutions: Conjugate priors:  ˆ x)  µx , Σ qˆ1 (x) = N (x|ˆ     N  Y    qˆ2 (γ) = G(γn |ˆ aγ , ˆbnγ ) n=1    N  Y    G(νn |ˆ q ˆ (ν) = aν , ˆbnν )   3

,

n=1



ˆ x , γˆ , νˆ) for quantifying estimation VBA jointly obtains (ˆ µx , Σ uncertainty (confidential interval) ; Outperforms JMAP.

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

25/32

Simulation in colored (spatially non-stationary) noises 1.4

1.4

1.4

10

2

2 1.3

1.3

1.3

8

0 1.2

0

1.2

1.2 6 −2

1.1

1.1

1.1

−2

1

−4

y (m)

y (m)

y (m)

4 −4 1

1 2

−6

0.9

0.9

0.9 0

−8

0.8

0.7

−8

0.7

−10

0.6 −1

−0.8

−0.6 x (m)

−0.4

−0.2

0

−1.2

(a) Source powers x.

−2

0.7

−4

0.6

−10

0.6 −1.2

−6

0.8

0.8

−1

−0.8

−0.6 x (m)

−0.4

−0.2

−1.2

0

(b) Beamforming y

1.4

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(c) DR-DAMAS.

1.4

1.4

4

2

2 1.3

1.3

1.3 2

0

0

1.2

1.2

1.2 0

−2

−2

1.1

1.1

1.1 y (m)

y (m)

y (m)

−2 −4 1

1

−4

1

−4 −6

0.9

0.9

−6

0.9 −6

0.8

−8

0.8

0.7

−10

0.7

0.6

−12

0.6

−8

0.8 −8

−10

0.7 −10

−1.2

−1

−0.8

−0.6 x (m)

(d) JMAP A. Mohammad-Djafari,

−0.4

−0.2

0

−12

0.6 −1.2

−1

−0.8

−0.6 x (m)

−0.4

(e) JMAP+Conv

−0.2

0

−1.2

−1

−0.8

−0.6 x (m)

−0.4

−0.2

0

(f) VBA+Conv

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

26/32

Real data in wind tunnel S2A at 2500Hz 1

0

0

−2

−2

−4

−4

−6

−6

1

0.5

0.5

−8 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

−10 −2

−8 −1.5

(a) Beamforming

−1

−0.5

0

0.5

1

1.5

2

(b) DR-DAMAS

1

0

0

−2

−2

−4

−4

−6

−6

1

0.5

0.5

−8 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

−10 −2

−8 −1.5

−1

(c) SC-RDAMAS

−0.5

0

0.5

1

1.5

2

−10

(d) JMAP

1

0

0

−2

−2

−4

−4

−6

−6

−8

−8

1

0.5

0

−10

0.5

−2

−1.5

−1

−0.5

0

0.5

(e) JMAP+Conv A. Mohammad-Djafari,

1

1.5

2

0

−10 −2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10

(f) VBA+Conv

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

27/32

Covariance matrix estimation in VBA: an advantage compared with JMAP 2.5 2 1 1.5 1

0.5

0.5 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

0

2

ˆ x (solution uncertainty) of estimated source powers x b. Estimated covariance Σ 0 −2 1 −4 −6

0.5

−8 0

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10

b by VBA+Conv approach Estimated source powers x

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

28/32

Contributions and Conclusions ◮

Improved forward models of acoustic power propagation: ◮





Proposed approaches: ◮

◮ ◮





Robust acoustic power propagation model by model uncertainty; Efficient invariant convolution model by reduced PSF size, separable PSF and GPU acceleration; Robust deconvolution approach with sparsity constraint (SC-RDAMAS) Bayesian approach with sparsity enforcing prior (JMAP) Non stationnarity of the model errors and sparsity enforcing with Student-t priors JMAP and Variational Bayesian Approximation (VBA)

Advantages: ◮ ◮ ◮



Higher spatial resolution: sparsity constraint/ prior; Wide dynamic range: sparsity parameter estimation Robust to non-stationary errors: hyper-parameter estimation of measurement errors and model uncertainty; Adaptive hyper-parameter estimations: Bayesian inference.

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

29/32

Perspectives ◮

In short term: ◮



In middle term: ◮





Real-time realization of 3D acoustic imaging by GPU: programming proposed approaches directly on GPU in order to utilize 25% and more of peak computational performance; More sophisticated prior models : Group sparsity prior for correlated sources; G or χ2 distribution for positive source powers... In middle term, forward models of full-wave propagation for correlated sources (directivity pattern);

In long term: ◮

◮ ◮ ◮

Inversion methods based on signal models to jointly solve signal amplitude (power), phase, characteristic frequency; De-reverberation in non-anechoic chamber; Acoustic separation; ......

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

30/32

List of publication Published journals (2) ◮



N. CHU, A. Mohammad-Djafari and J. Picheral, Robust Bayesian super-resolution approach via sparsity enforcing priors for near-field acoustic source imaging, Journal of Sound and Vibration, Vol. 332, No. 18, pp 4369-4389, Feb. 2013. N. CHU, J. Picheral and A. Mohammad-Djafari, N. Gac, A robust super-resolution approach with sparsity constraint in acoustic imaging, Applied Acoustics, vol.76, pp.197-208, 2014.

To submit: (2) ◮

N. CHU, A. Mohammad-Djafari, N. Gac, and J. Picheral, A 2D invariant convolution model for acoustic imaging, International Journal of Aeroacoustics, 2013.



N. CHU, A. Mohammad-Djafari, N. Gac, and J. Picheral, A hierarchical variational Bayesian approach approach via Student’s-t priors for acoustic imaging with non-stationary noises, Journal of the Acoustical Society of America, 2013.

A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

31/32

List of publications Published in conference (5) ◮ N. CHU, A. Mohammad-Djafari, N. Gac, and J. Picheral, An efficient variational Bayesian inference approach via Student’s-t priors for acoustic imaging in colored noises , Journal of the Acoustical Society of America, Vol. 133, No.5. Pt.2, POMA Vol 19, pp. 055031-40, International Conference of Acoustics (ICA2013), Montreal, Canada, 2013. ◮ N. CHU, A. Mohammad-Djafari and J. Picheral, A Bayesian sparse inference approach in near-field wideband aeroacoustic imaging, 2012 IEEE International Conference on Image Processing, Orlando (ICIP2012), USA, Sep. 30-Oct. 04, 2012. (EI) ◮ N. CHU, A. Mohammad-Djafari and J. Picheral, Bayesian sparse regularization in near-field wideband aeroacoustic imaging for wind tunnel test, 2012 IOA annual meeting and 11th Congr` es Fran¸cais d’Acoustique (ACOUSTICS2012), Nantes, France, Apr. 23-27, 2012, pp. 1391-1396. ◮ N. CHU, A. Mohammad-Djafari and J. Picheral, Two robust super-resolution approaches with sparsity constraint and sparse regularization for near-field wideband extended aeroacoustic source imaging, Berlin Beamforming Conference 2012 (BeBeC2012), Berlin, Germany, Feb. 22-23, 2012, pp. 29. ◮ N. CHU, J. Picheral and A.Mohammad-Djafari, A robust super-resolution approach with sparsity constraint for near-field wideband acoustic imaging, IEEE International Symposium on Signal Processing and Information Technology (ISSPIT2011), Bilbao, Spain, Dec. 14-17, 2011, pp. 310-315. (EI) A. Mohammad-Djafari,

Commision Signaux et Statistiques du Conseil Scientifique, Suplec Gif,

16 Octobre 2014

32/32