Bayesian Computed Tomography

http://www.lss.supelec.fr. NIMI, Gent, Belgium, Mai 2010. A. Mohammad-Djafari,. NIMI Workshop on medical imaging, Gent, Belgium, May 29, 2010. 1/41 ...
1MB taille 3 téléchargements 360 vues
. Bayesian Computed Tomography Ali Mohammad-Djafari Groupe Probl` emes Inverses Laboratoire des Signaux et Syst` emes UMR 8506 CNRS - SUPELEC - Univ Paris Sud 11 Sup´ elec, Plateau de Moulon, 91192 Gif-sur-Yvette, FRANCE. [email protected] http://djafari.free.fr http://www.lss.supelec.fr NIMI, Gent, Belgium, Mai 2010

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

1/41

Content ◮

Image reconstruction in Computed Tomography: An ill posed invers problem



Two main steps in Bayesian approach: Prior modeling and Bayesian computation Prior models for images:



◮ ◮ ◮





Separable Gaussian, GG, ... Gauss-Markov, General one layer Markovian models Hierarchical Markovian models with hidden variables (contours and regions) Gauss-Markov-Potts

Bayesian computation ◮ ◮

MCMC Variational and Mean Field approximations (VBA, MFA)



Application: Computed Tomography in NDT



Conclusions and Work in Progress



Questions and Discussion

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

2/41

Computed Tomography: Making an image of the interior of a body ◮ ◮ ◮

f (x, y ) a section of a real 3D body f (x, y , z) gφ (r ) a line of observed radiographe gφ (r , z) Forward model: Line integrals or Radon Transform Z gφ (r ) = f (x, y ) dl + ǫφ (r ) L

ZZ r,φ f (x, y ) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r ) =



Inverse problem: Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r ), i = 1, · · · , M find f (x, y )

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

3/41

2D and 3D Computed Tomography 3D

2D Projections

80

60 f(x,y)

y 40

20

0 x −20

−40

−60

−80 −80

gφ (r1 , r2 ) =

Z

f (x, y , z) dl

−60

gφ (r ) =

Lr1 ,r2 ,φ

−40

Z

−20

0

20

40

60

f (x, y ) dl Lr,φ

Forward probelm: f (x, y ) or f (x, y , z) −→ gφ (r ) or gφ (r1 , r2 ) Inverse problem: gφ (r ) or gφ (r1 , r2 ) −→ f (x, y ) or f (x, y , z) A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

4/41

80

CT as a linear inverse problem Fan beam X−ray Tomography −1

−0.5

0

0.5

1

Source positions

−1

g (si ) =

Z

−0.5

Detector positions

0

0.5

1

f (r) dli + ǫ(si ) −→ Discretization −→ g = Hf + ǫ

Li



g, f and H are huge dimensional

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

5/41

Inversion: Deterministic methods Data matching ◮

Observation model gi = hi (f ) + ǫi , i = 1, . . . , M −→ g = H(f ) + ǫ



Misatch between data and output of the model ∆(g, H(f )) fb = arg min {∆(g, H(f ))} f



Examples:

– LS

∆(g, H(f )) = kg − H(f )k2 =

X

|gi − hi (f )|2

i

– Lp – KL

p

∆(g, H(f )) = kg − H(f )k = ∆(g, H(f )) =

X i



X

|gi − hi (f )|p , 1 < p < 2

i

gi gi ln hi (f )

In general, does not give satisfactory results for inverse problems.

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

6/41

Inversion: Regularization theory Inverse problems = Ill posed problems −→ Need for prior information Functional space (Tikhonov): g = H(f ) + ǫ −→ J(f ) = ||g − H(f )||22 + λ||Df ||22 Finite dimensional space (Philips & Towmey): g = H(f ) + ǫ • Minimum norme LS (MNLS): J(f ) = ||g − H(f )||2 + λ||f ||2 • Classical regularization: J(f ) = ||g − H(f )||2 + λ||Df ||2 • More general regularization: or

J(f ) = Q(g − H(f )) + λΩ(Df )

J(f ) = ∆1 (g, H(f )) + λ∆2 (f , f 0 ) Limitations: • Errors are considered implicitly white and Gaussian • Limited prior information on the solution • Lack of tools for the determination of the hyperparameters A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

7/41

Bayesian estimation approach M:

g = Hf + ǫ



Observation model M + Hypothesis on the noise ǫ −→ p(g|f ; M) = pǫ(g − Hf )



A priori information

p(f |M)



Bayes :

p(f |g; M) =

p(g|f ; M) p(f |M) p(g|M)

Link with regularization : Maximum A Posteriori (MAP) : fb = arg max {p(f |g)} = arg max {p(g|f ) p(f )} f

f

= arg min {− ln p(g|f ) − ln p(f )} f

with Q(g, Hf ) = − ln p(g|f ) and λΩ(f ) = − ln p(f ) But, Bayesian inference is not only limited to MAP A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

8/41

Case of linear models and Gaussian priors g = Hf + ǫ ◮







Hypothesis on the noise: ǫ ∼ N (0, σǫ2 I)   1 p(g|f ) ∝ exp − 2 kg − Hf k2 2σǫ Hypothesis on f : f ∼ N (0, σf2 I)   1 2 p(f ) ∝ exp − 2 kf k 2σf A posteriori:   1 1 2 2 p(f |g) ∝ exp − 2 kg − Hf k − 2 kf k 2σǫ 2σf MAP : fb = arg maxf {p(f |g)} = arg minf {J(f )} with



J(f ) = kg − Hf k2 + λkf k2 ,

λ=

Advantage : characterization of the solution f |g ∼ N (fb, Pb ) with fb = Pb H t g,

A. Mohammad-Djafari,

σǫ2 σf2

Pb = H t H + λI

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

−1

9/41

MAP estimation with other priors: fb = arg min {J(f )} with J(f ) = kg − Hf k2 + λΩ(f ) f

Separable priors: ◮

◮ ◮



Gaussian:  P p(fj ) ∝ exp −α|fj |2 −→ Ω(f ) = kf k2 = α j |fj |2 P Gamma: p(fj ) ∝ fjα exp {−βfj } −→ Ω(f ) = α j ln fj + βfj

Beta: P P p(fj ) ∝ fjα (1 − fj )β −→ Ω(f ) = α j ln fj + β j ln(1 − fj ) Generalized Gaussian: p(fj ) ∝ exp {−α|fj |p } ,

1 < p < 2 −→

Markovian models:     X p(fj |f ) ∝ exp −α φ(fj , fi ) −→  

Ω(f ) = α

i ∈Nj

A. Mohammad-Djafari,

Ω(f ) = α

NIMI Workshop on medical imaging, Gent, Belgium,

P

XX j

j

|fj |p ,

φ(fj , fi ),

i ∈Nj

May 29, 2010.

10/41

Main advantages of the Bayesian approach ◮

MAP = Regularization



Posterior mean ? Marginal MAP ?



More information in the posterior law than only its mode or its mean



Meaning and tools for estimating hyper parameters



Meaning and tools for model selection



More specific and specialized priors, particularly through the hidden variables More computational tools:





◮ ◮



Expectation-Maximization for computing the maximum likelihood parameters MCMC for posterior exploration Variational Bayes for analytical computation of the posterior marginals ...

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

11/41

Full Bayesian approach M:

g = Hf + ǫ



Forward & errors model: −→ p(g|f , θ 1 ; M)



Prior models −→ p(f |θ 2 ; M)



Hyperparameters θ = (θ 1 , θ 2 ) −→ p(θ|M)



Bayes: −→ p(f , θ|g; M) =



Joint MAP:







p(g|f,θ;M) p(f|θ;M) p(θ|M) p(g|M)

b = arg max {p(f , θ|g; M)} (fb, θ) (f,θ) R  p(f |g; M) = R p(f , θ|g; M) df Marginalization: p(θ|g; M) = p(f , θ|g; M) dθ ( R fb = f p(f , θ|g; M) df dθ R Posterior means: b = θ p(f , θ|g; M) df dθ θ

Evidence of the model: ZZ p(g|M) = p(g|f , θ; M)p(f |θ; M)p(θ|M) df dθ

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

12/41

MAP estimation with different prior models 

  g = Hf + ǫ g = Hf + ǫ  = f = Cf + z with z ∼ N (0, σf2 I) p(f ) = N 0, σf2 (D t D)−1  Df = z with D = (I − C) p(f |g) = N (fb, Pbf ) with fb = Pbf H t g,

Pbf = H t H + λD t D

J(f ) = − ln p(f |g) = kg − Hf k2 + λkDf k2

−1

——————————————————————————–   g = Hf + ǫ  = g = Hf + ǫ p(f ) = N 0, σf2 (W W t ) f = W z with z ∼ N (0, σf2 I) p(z|g) = N (b z , Pbz ) with zb = Pbz W t H t g, Pbz = W t H t HW + λI J(z) = − ln p(z|g) = kg − HW zk2 + λkzk2 −→ fb = W zb

z decomposition coefficients A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

13/41

−1

MAP estimation and Compressed Sensing 

g = Hf + ǫ f = Wz



W a code book matrix, z coefficients



Gaussian:



o n P p(z) = N (0, σz2 I) ∝ exp − 2σ1 2 j |z j |2 z P J(z) = − ln p(z|g) = kg − HW zk2 + λ j |z j |2

Generalized Gaussian (sparsity, β = 1): o n P p(z) ∝ exp −λ j |z j |β

J(z) = − ln p(z|g) = kg − HW zk2 + λ



z = arg minz {J(z)} −→ fb = W zb

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

P

j

|z j |β

May 29, 2010.

14/41

Two main steps in the Bayesian approach ◮

Prior modeling ◮

◮ ◮



Separable: Gaussian, Generalized Gaussian, Gamma, mixture of Gaussians, mixture of Gammas, ... Markovian: Gauss-Markov, GGM, ... Separable or Markovian with hidden variables (contours, region labels)

Choice of the estimator and computational aspects ◮ ◮ ◮ ◮ ◮

MAP, Posterior mean, Marginal MAP MAP needs optimization algorithms Posterior mean needs integration methods Marginal MAP needs integration and optimization Approximations: ◮ ◮ ◮

A. Mohammad-Djafari,

Gaussian approximation (Laplace) Numerical exploration MCMC Variational Bayes (Separable approximation)

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

15/41

Which images I am looking for? 50 100 150 200 250 300 350 400 450 50

A. Mohammad-Djafari,

100

150

200

250

300

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

16/41

Which image I am looking for?

Gaussian  p(fj |fj−1 ) ∝ exp −α|fj − fj−1 |2

Generalized Gaussian p(fj |fj−1 ) ∝ exp {−α|fj − fj−1 |p }

Piecewize Gaussian  p(fj |qj , fj−1 ) = N (1 − qj )fj−1 , σf2

Mixture of GM  p(fj |zj = k) = N mk , σk2

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

17/41

Gauss-Markov-Potts prior models for images ”In NDT applications of CT, the objects are, in general, composed of a finite number of materials, and the voxels corresponding to each materials are grouped in compact regions”

How to model this prior information?

f (r) z(r) ∈ {1, ..., K } p(f (r)|z(r) = k, mk , vk ) = N (mk , vk ) X p(f (r)) = P(z(r) = k) N (m k , vk ) Mixture of Gaussians  k  X  p(z(r)|z(r ′ ), r ′ ∈ V(r)) ∝ exp γ δ(z(r) − z(r ′ ))  ′  r ∈V(r)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

18/41

Four different cases To each pixel of the image is associated 2 variables f (r) and z(r) ◮

f |z Gaussian iid, z iid : Mixture of Gaussians



f |z Gauss-Markov, z iid : Mixture of Gauss-Markov



f |z Gaussian iid, z Potts-Markov : Mixture of Independent Gaussians (MIG with Hidden Potts)



f |z Markov, z Potts-Markov : Mixture of Gauss-Markov (MGM with hidden Potts)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

f (r)

z(r) May 29, 2010.

19/41

Four different cases

Case 1: Mixture of Gaussians

Case 2: Mixture of Gauss-Markov

Case 3: MIG with Hidden Potts

Case 4: MGM with hidden Potts

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

20/41

Four different cases f (r)|z(r) z(r) f (r)|z(r) ′

z(r)|z(r ) ′



f (r)|f (r ), z(r), z(r ) z(r) 0

0

0

1

0

0

1

0

1

0

q(r) = {0, 1} ′



f (r)|f (r ), z(r), z(r ) ′

z(r)|z(r ) 0

0

0

A. Mohammad-Djafari,

1

0

0

1

0

1

NIMI Workshop on medical imaging, Gent, Belgium,

0

q(r) = {0, 1}

May 29, 2010.

21/41

f |z Gaussian iid,

Case 1:

z iid

Independent Mixture of Independent Gaussiens (IMIG): p(f (r)|z(r) = k) = N (mk , vk ), p(f (r)) = Q

p(z) = Noting

PK

k=1

∀r ∈ R P

αk N (mk , vk ), with

r p(z(r)

= k) =

Q

r αk

Rk = {r : z(r) = k},

k

=

Q

k

αk = 1.

αnkk

R = ∪k Rk ,

mz (r) = mk , vz (r) = vk , αz (r) = αk , ∀r ∈ Rk we have: p(f |z) =

Y

N (mz (r), vz (r))

r∈R

p(z) =

Y r

A. Mohammad-Djafari,

αz (r) =

Y

P

αk

r∈R

δ(z(r)−k)

k

NIMI Workshop on medical imaging, Gent, Belgium,

=

Y

αnkk

k

May 29, 2010.

22/41

Case 2:

f |z Gauss-Markov,

z iid

Independent Mixture of Gauss-Markov (IMGM): p(f (r)|z(r), z(r ′ ), f (r ′ ), r ′ ∈ V(r)) = N (µz (r), Pvz (r)), ∀r∗ ∈′ R 1 µz (r) = |V(r)| r′ ∈V(r) µz (r ) µ∗z (r ′ ) = δ(z(r ′ ) − z(r)) f (r ′ ) + (1 − δ(z(r ′ ) − z(r)) mz (r ′ ) = (1 − c(r ′ )) f (r ′ ) + c(r ′ ) mz (r ′ ) Q Q p(f |z) ∝ Qr N (µz (r), vz (r)) ∝ Qk αk N (mk 1, Σk ) p(z) = r vz (r) = k αnkk

with 1k = 1, ∀r ∈ Rk and Σk a covariance matrix (nk × nk ).

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

23/41

Case 3: f |z Gauss iid, z Potts Gauss iid as in Case 1: Q p(f |z) = Qr∈R Q N (mz (r), vz (r)) = k r∈Rk N (mk , vk )

Potts-Markov:

   X  p(z(r)|z(r ′ ), r ′ ∈ V(r)) ∝ exp γ δ(z(r) − z(r ′ ))  ′  r ∈V(r)

   X X  p(z) ∝ exp γ δ(z(r) − z(r ′ ))   ′ r∈R r ∈V(r)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

24/41

Case 4: f |z Gauss-Markov, z Potts Gauss-Markov as in Case 2: p(f (r)|z(r), z(r ′ ), f (r ′ ), r ′ ∈ V(r)) = N (µz (r), vz (r)), ∀r ∈ R µz (r) µ∗z (r ′ )

1 P ∗ ′ = |V(r)| r′ ∈V(r) µz (r ) = δ(z(r ′ ) − z(r)) f (r ′ ) + (1 − δ(z(r ′ ) − z(r)) mz (r ′ )

p(f |z) ∝

Q

r N (µz (r), vz (r))



Q

k

αk N (mk 1, Σk )

Potts-Markov as in Case 3:    X X  p(z) ∝ exp γ δ(z(r) − z(r ′ ))   ′ r∈R r ∈V(r)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

25/41

Summary of the two proposed models

f |z Gaussian iid z Potts-Markov

f |z Markov z Potts-Markov

(MIG with Hidden Potts)

(MGM with hidden Potts)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

26/41

Bayesian Computation p(f , z, θ|g) ∝ p(g|f , z, vǫ ) p(f |z, m, v) p(z|γ, α) p(θ) θ = {vǫ , (αk , mk , vk ), k = 1, ·, K }

p(θ) Conjugate priors



Direct computation and use of p(f , z, θ|g; M) is too complex



Possible approximations : ◮ ◮ ◮



Gauss-Laplace (Gaussian approximation) Exploration (Sampling) using MCMC methods Separable approximation (Variational techniques)

Main idea in Variational Bayesian methods: Approximate p(f , z, θ|g; M) by q(f , z, θ) = q1 (f ) q2 (z) q3 (θ) ◮ ◮

Choice of approximation criterion : KL(q : p) Choice of appropriate families of probability laws for q1 (f ), q2 (z) and q3 (θ)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

27/41

MCMC based algorithm p(f , z, θ|g) ∝ p(g|f , z, θ) p(f |z, θ) p(z) p(θ) General scheme:







b g) −→ zb ∼ p(z|fb, θ, b g) −→ θ b ∼ (θ|fb, zb, g) fb ∼ p(f |b z , θ, b g) ∝ p(g|f , θ) p(f |b b Sample f from p(f |b z , θ, z , θ) Needs optimisation of a quadratic criterion. b g) ∝ p(g|fb, zb, θ) b p(z) Sample z from p(z|fb, θ, Needs sampling of a Potts Markov field.

Sample θ from p(θ|fb, zb, g) ∝ p(g|fb, σǫ2 I) p(fb|b z , (mk , vk )) p(θ) Conjugate priors −→ analytical expressions.

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

28/41

Application of CT in NDT Reconstruction from only 2 projections





g1 (x) =

Z

f (x, y ) dy

g2 (y ) =

Z

f (x, y ) dx

Given the marginals g1 (x) and g2 (y ) find the joint distribution f (x, y ). Infinite number of solutions : f (x, y ) = g1 (x) g2 (y ) Ω(x, y ) Ω(x, y ) is a Copula: Z Z Ω(x, y ) dx = 1 and Ω(x, y ) dy = 1

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

29/41

Application in CT 20

40

60

80

100

120 20

40

60

80

100

120

g|f f |z z q g = Hf + ǫ iid Gaussian iid q(r) ∈ {0, 1} g|f ∼ N (Hf , σǫ2 I) or or 1 − δ(z(r) − z(r ′ )) Gaussian Gauss-Markov Potts binary Forward model Gauss-Markov-Potts Prior Model Auxilary Unsupervised Bayesian estimation: p(f , z, θ|g) ∝ p(g|f , z, θ) p(f |z, θ) p(θ) A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

30/41

Results: 2D case

Original

Backprojection

Gauss-Markov+pos

Filtered BP

GM+Line process

GM+Label process

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

120

120 20

A. Mohammad-Djafari,

LS

40

60

80

100

120

c

120 20

40

60

80

100

NIMI Workshop on medical imaging, Gent, Belgium,

120

z

May 29, 2010.

20

40

60

80

31/41

100

120

c

Some results in 3D case (Results obtained with collaboration with CEA)

A. Mohammad-Djafari,

M. Defrise

Phantom

FeldKamp

Proposed method

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

32/41

Some results in 3D case

FeldKamp

A. Mohammad-Djafari,

Proposed method

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

33/41

Some results in 3D case Experimental setup

A photograpy of metalique esponge

Reconstruction by proposed method

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

34/41

Application: liquid evaporation in metalic esponge

Time 0

A. Mohammad-Djafari,

Time 1

Time 2

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

35/41

Conclusions ◮

Gauss-Markov-Potts are useful prior models for images incorporating regions and contours



Bayesian computation needs often pproximations (Laplace, MCMC, Variational Bayes)



Application in different CT systems (X ray, Ultrasound, Microwave, PET, SPECT) as well as other inverse problems

Work in Progress and Perspectives : ◮

Efficient implementation in 2D and 3D cases using GPU



Evaluation of performances and comparison with MCMC methods



Application to other linear and non linear inverse problems: (PET, SPECT or ultrasound and microwave imaging)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

36/41

Some references ◮ ◮ ◮ ◮ ◮ ◮ ◮ ◮ ◮

◮ ◮ ◮

A. Mohammad-Djafari (Ed.) Probl` emes inverses en imagerie et en vision (Vol. 1 et 2), Hermes-Lavoisier, Trait´ e Signal et Image, IC2, 2009, A. Mohammad-Djafari (Ed.) Inverse Problems in Vision and 3D Tomography, ISTE, Wiley and sons, ISBN: 9781848211728, December 2009, Hardback, 480 pp. H. Ayasso and Ali Mohammad-Djafari Joint NDT Image Restoration and Segmentation using Gauss-Markov-Potts Prior Models and Variational Bayesian Computation, To appear in IEEE Trans. on Image Processing, TIP-04815-2009.R2, 2010. H. Ayasso, B. Duchene and A. Mohammad-Djafari, Bayesian Inversion for Optical Diffraction Tomography Journal of Modern Optics, 2008. A. Mohammad-Djafari, Gauss-Markov-Potts Priors for Images in Computer Tomography Resulting to Joint Optimal Reconstruction and segmentation, International Journal of Tomography & Statistics 11: W09. 76-92, 2008. A Mohammad-Djafari, Super-Resolution : A short review, a new method based on hidden Markov modeling of HR image and future challenges, The Computer Journal doi:10,1093/comjnl/bxn005:, 2008. O. F´ eron, B. Duch` ene and A. Mohammad-Djafari, Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data, Inverse Problems, 21(6):95-115, Dec 2005. M. Ichir and A. Mohammad-Djafari, Hidden markov models for blind source separation, IEEE Trans. on Signal Processing, 15(7):1887-1899, Jul 2006. F. Humblot and A. Mohammad-Djafari, Super-Resolution using Hidden Markov Model and Bayesian Detection Estimation Framework, EURASIP Journal on Applied Signal Processing, Special number on Super-Resolution Imaging: Analysis, Algorithms, and Applications:ID 36971, 16 pages, 2006. O. F´ eron and A. Mohammad-Djafari, Image fusion and joint segmentation using an MCMC algorithm, Journal of Electronic Imaging, 14(2):paper no. 023014, Apr 2005. H. Snoussi and A. Mohammad-Djafari, Fast joint separation and segmentation of mixed images, Journal of Electronic Imaging, 13(2):349-361, April 2004. A. Mohammad-Djafari, J.F. Giovannelli, G. Demoment and J. Idier, Regularization, maximum entropy and probabilistic methods in mass spectrometry data processing problems, Int. Journal of Mass Spectrometry, 215(1-3):175-193, April 2002.

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

37/41

Thanks, Questions and Discussions Thanks to:

My graduated PhD students:

◮ ◮ ◮ ◮

H. Snoussi, M. Ichir, (Sources separation) F. Humblot (Super-resolution) H. Carfantan, O. F´ eron (Microwave Tomography) S. F´ ekih-Salem (3D X ray Tomography)

My present PhD students:

◮ ◮ ◮ ◮ ◮

H. Ayasso (Optical Tomography, Variational Bayes) D. Pougaza (Tomography and Copula) —————– Sh. Zhu (SAR Imaging) D. Fall (Emission Positon Tomography, Non Parametric Bayesian)

My colleages in GPI (L2S) & collaborators in other instituts:

◮ ◮ ◮ ◮ ◮ ◮ ◮

B. Duchˆ ene & A. Joisel (Inverse scattering and Microwave Imaging) N. Gac & A. Rabanal (GPU Implementation) Th. Rodet (Tomography) —————– A. Vabre & S. Legoupil (CEA-LIST), (3D X ray Tomography) E. Barat (CEA-LIST) (Positon Emission Tomography, Non Parametric Bayesian) C. Comtat (SHFJ, CEA)(PET, Spatio-Temporal Brain activity)

Questions and Discussions A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

38/41

Continuous Signals and Images Simple Gauss-Markov model g = Hf + ǫ f (r) Continuous Image : Gauss-Markov p(f ) = N (0, Σf ) p(fj |fi , i 6= j) = N (βf , σ2 )   j−1 P f p(f (r)|f (s)) = N β s∈V(r) f (s), σf2

MAP : fb = arg maxf {p(f |g)} = arg minf {J(f )} J(f ) = kg − Hf k2 +

P

j

(f j − βf j−1 )2

J(f ) = kg − Hf k2 2 P P  + r f (r) − β s∈V(r) f (s)

A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

39/41

Piecewise continuous signals and images Compound Gauss-Markov with contours hidden variable model f (r) piecewise continuous image : Compound Intensity-Contours MRF Hidden contour variable: q(r) p(fj |qj , fi , i 6= j) = N (β(1 − qj )fj−1 , σf2 ) p(f (r)|q(r), f (s))   P = N β(1 − q(r)) s∈V(r) f (s), σf2 b = arg maxf,q {p(f , q|g)} MAP : (fb, q)

20

40

60

80

100

120 20

40

fb = arg max {p(f |g, q)} = arg min {J(f )} f

f

J(f ) = kg − Hf k2  2 X X f (s) + (1 − q(r)) f (r) − β r

s∈V(r)

qb = arg maxq {p(q|g)} A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

May 29, 2010.

40/41

60

80

100

120

Objects composed of a finite number of homogeneous materials f : Compound intensity-regions MRF Introduction of a class label variable z(r) z(r) = k, k = 1, · · · , K Rk = {r : z(r) = k}, R = ∪k Rk p(f (r)|z (r) = k) = N (f (r)|mk , σk2 ) z = {z(r), r ∈ R} a segmented image Potts MRF:   X X  p(z) ∝ exp α δ(z(r) − z(s))  

f, g

20

r∈R s∈V(r)

p(f , z, θ|g) ∝ p(g|f , θ 1 ) p(f |z, θ 2 ) p(z|θ 2 ) p(θ) b b g) f ∼ p(f |b z , θ, b g) zb ∼ p(z|fb, θ, b b θ ∼ p(θ|f , zb, g) A. Mohammad-Djafari,

NIMI Workshop on medical imaging, Gent, Belgium,

zb 40

60

80

100

120 20

fb

May 29, 2010.

qb

40

41/41

60

80

100

120