Bayesian inference for inverses problems in signal and image

Multi sensor image processing problems. • Disjoint multi sensors system: g i. = Hif i. + ϵi, i = 1,··· ,M. • General multi input multi output (MIMO) system: g i. = N. ∑.
936KB taille 0 téléchargements 342 vues
'

Bayesian inference for inverses problems in signal and image processing

$

Ali Mohammad-Djafari Ph.D. Students & collaborators: M. Ichir, O. F´eron, P. Brault, A. Mohammadpour, Z. Chama H. Snoussi, F. Humblot, S. Moussaoui Laboratoire des Signaux et Syst`emes ´lec-Ups Cnrs-Supe Sup´elec, Plateau de Moulon 91192 Gif-sur-Yvette, FRANCE. [email protected] &

http://djafari.free.fr 1

%

'

$

Contents • Inverses problems in image processing • Multi sensor image processing problems • Basics of Bayesian approach • HMM modeling of images • Examples of applications – Single channel image restoration – Fourier synthesis in optical imaging – Multi channel data fusion and joint segmentation – Video movie segmentation with motion estimation – Blind source (image) separation (BSS) – Hyperspectral image segmentation • Bayesian image processing in wavelet domain

• Some results and conclusions &

2

%

'

Inverses problems in image processing

$

• General non linear inverse problem: g(r) = [Hf (r 0 )](r) + ²(r), • Linear model: g(r) =

Z

r = (x, y) ∈ R,

r 0 = (x0 , y 0 ) ∈ R0

f (r 0 )h(r, r 0 ) dr 0 + ²(r) R0

• Linear and translation invariante (convolution) model: Z f (r 0 )h(r − r 0 ) dr 0 + ²(r) = h(r) ∗ f (r) + ²(r) g(r) = R0

• Discretized version g = Hf + ² where g = {g(r), r ∈ R}, ² = {²(r), r ∈ R} and f = {f (r 0 ), r 0 ∈ R0 }

&

3

%

'

Single channel image restoration

$

²(x, y)

? f (x, y) -

h(x, y)

- +

Observation model :

- g(x, y) = f (x, y) ∗ h(x, y) + ²(x, y)

g = Hf + ²

? ⇐=

&

4

%

'

$

Fourier synthesis in optical imaging g(ω) =

Z

£

t

¤

f (r) exp −jω r dr + ²(ω)

• Coherent imaging:

G(g) = g

−→

g = Hf + ²

• Non coherent imaging:

G(g) = |g|

−→

g = H(f ) + ²

g = {g(ω), ω ∈ Ω},

² = {²(ω), ω ∈ Ω}

?

20

40

20

40

⇐=

60

60

80

80

100

100

120

120 20

&

f = {f (r), r ∈ R}

and

40

60

80

100

120

20

5

40

60

80

100

120

%

'

Multi sensor image processing problems

$

• Disjoint multi sensors system: g i = H i f i + ²i ,

i = 1, · · · , M

• General multi input multi output (MIMO) system: N X H ij f j + ²i , i = 1, · · · , M gi = j=1

• General unknown mixing gain MIMO system: N X Aij H j f j + ²i , i = 1, · · · , M gi = j=1

• Blind Sources Separation (BSS) problem: N X Aij f j + ²i , i = 1, · · · , M gi = j=1

where A = {Aij , i = 1, · · · , M, j = 1, · · · , N } is an unknown mixing matrix.

&

6

%

'

$

Multi-spectral image deconvolution ²i (x, y) fi (x, y) -

h(x, y)

Observation model :

? - + -gi (x, y) = fi (x, y) ∗ h(x, y) + ²i (x, y)

g i = Hf i + ²i ,

i = 1, 2, 3

? ⇐= &

7

%

'

Image fusion and joint segmentation

$

Fusion ? =⇒

gi (r) = fi (r) + ²i (r), g(r) = {gi (r), i = 1, M },

g i = {gi (r), r ∈ R},

g(r) = f (r) + ²(r), &

i = 1, · · · , M

8

g = {g i (r), i = 1, M }

g =f +²

%

'

Blind image separation and joint segmentation

gi (r) = f1 (r)

j=1

Aij fj (r) + ²i (r)

g(r) = {gi (r), i = 1, M }

? f2 (r)

PN

$

g1 (r)

g(r) = Af (r) + ²(r), g = {g i (r), i = 1, M }

Separation

g i = {gi (r), r ∈ R},

⇐= g2 (r) f3 (r)

&

9

g = Af + ²

%

'

$

&

%

Segmentation of hyperspectral images

10

'

$

Segmentation of hyperspectral images 50

50

50

50

50

50

100

100

100

100

100

100

150

150

150

150

150

150

200

200

200

200

200

200

250

250

250

250

250

250

300

300

300

300

300

300

350

350

350

350

350

350

400

400

400

400

400

400

450

450

450

450

450

450

500

500

500

500

500

100

200

300

400

500

600

100

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

400

450

450

200

300

400

500

600

100

200

300

400

500

600

100

200

300

400

500

500

600

100

20000

20000

15000

15000

10000

10000

5000

5000

200

300

400

500

600

300

500 400

500

600

40

60

80

100

120

140

160

180

200

220

0

0 0

20

40

60

80

100

120

140

160

180

200

220

−5000

0

50

gi (r) = fi (r) + ²i (r), g(r) = {gi (r), i = 1, M }, &

600

1000

600 20

500

2000

500

300

400

3000

400

200

300

4000

200

100

200

5000

100

500

100

100

150

200

11

−5000

0

50

100

150

200

250

−1000

0

50

100

150

200

250

i = 1, · · · , M

g i = {gi (r), r ∈ R},

g(r) = f (r) + ²(r),

250

g = {g i (r), i = 1, M }

g =f +²

%

'

Blind image separation and joint segmentation

gi (r) = f1 (r)

j=1

Aij fj (r) + ²i (r)

g(r) = {gi (r), i = 1, M }

? f2 (r)

PN

$

g1 (r)

g(r) = Af (r) + ²(r), g = {g i (r), i = 1, M }

Separation

g i = {gi (r), r ∈ R},

⇐= g2 (r) f3 (r)

&

12

g = Af + ²

%

'

$

Bayesian estimation approach g = Af + ² • Forward model and prior knowledge on the noise • Prior knowledge on f • Bayes rule:

−→

−→

p(g|f )

p(f )

p(f |g) = p(g|f ) p(f ) / p(g) ∝ p(g|f ) p(f )

• Infer on f via p(f |g): – MAP estimator: © ª ª © b f = arg max p(f |g) = arg min − ln p(f |g) f f Z b = f p(f |g) df posterior mean – MSE estimator f

&

13

%

'

Bayesian blind sources separation (BBSS)

$

g = Af + ² • Likelihood

p(g|f , A, θ 1 )

• Priors

p(f |θ 2 ), p(A|θ 3 ) and p(θ)

hyperparameters θ = {θ 1 θ 2 , θ 3 }

• Bayes rule p(f , A, θ|g) ∝ p(g|f , A, θ 1 ) p(f |θ 2 ) p(A|θ 3 ) p(θ) • Generalized a posteriori EM-ML estimator o n ª © b = arg max p(f |g, A, b b = arg max p(A, θ|g) b θ) b θ) −→ f (A, (A , θ ) f • MSE estimator which corresponds to the posterior mean using MCMC Z b = {f b , A, b p(f , A, θ|g) d{f b , A, b b , A, b θ} b θ} b θ}. {f

&

14

%

'

$

HMM modeling of images What they share ?

50 20

100 40

150

Borders & Regions

200 60

250 80

300

350

100

Segmentation

400 120

450

500

140 20

40

60

80

100

120

140

160

180

100

200

300

400

500

600

Hidden variable z(r) z(r) = k, k = 1, · · · , K

50 20

100 40

Rk = {r : z(r) = k}, R = ∪k Rk

150

200 60

250 80

300

Homogeneity in regions

350

100

400 120

450

p(f (r)|z(r) = k) = N (mk , σk2 )

500

140 20

40

60

80

100

120

140

160

180

100

200

Rj k = {r : zj (r) = k},

300

400

500

600

R j = ∪ k Rj k

f j k = {fj (r) : r ∈ Rj k }, &

f j = ∪k f j k . Kj Kj Y Y p(fj (r), r ∈ Rj k ) = N (mj k 1, σj 2k ) p(fj (r), r ∈ R) = k=1

k=1

15

%

'

Main hypothesis:

k=4

$

k=3 k=2 k=1

• Pixels values in different regions of an image are independent. • For pixels values in a given region of an image, two possibilities: – i.i.d.:

p(fj (r)|zj (r) = k) = N (mj k , σj2 k ) p(fj (r), r ∈ Rj k ) = N (mj k 1, σj2 k I)

– Markovien:

k=4 k=3 k=2

k=1

k=4 k=2

k=3

k=1

p(fj (r), r ∈ Rj k ) = N (mj k 1, Σj k )

• For pixels values in different images but in a given common region two possibilities: – i.i.d.: – Markovien:

&

(fj (r)|z(r) = k) independent of (fi (r)|z(r) = k),

i 6= j

p(fj (r)|z(r) = k, f (r)) = p(fj (r)|z(r) = k, fj−1 (r)) 16

%

'

$

Modeling the labels p(fj (r)|zj (r) = k) =

N (mj k , σj2 k )

−→ p(fj (r)) =

X

P (zj (r) = k) N (mj k , σj2 k )

k

• Independent Gaussian Mixture model (IGM), where z j = {zj (r), r ∈ R} are assumed to be independent and X Y pk = 1 and p(z j ) = pk P (zj (r) = k) = pk , with k

k

• Contextual Gaussian Mixture model (CGM): z j Markovien   X X  δ(zj (r) − zj (s)) p(z j ) ∝ exp α r ∈R s∈V(r ) which is the Potts Markov random feild (PMRF). The parameter α controls the mean value of the regions’ sizes. & 17

%

'

Expressions of likelihood, prior and posterior laws N X

gi =

Ai,j f j + ²i ,

i = 1, · · · , M

−→

$

g = Af + ²

j=1

• Likelihood: p(g|A, f , θ 1 ) =

M Y

p(g i |A, f , Σ² i ) =

i=1

Σ² i = σ² 2i I,

−→

M Y

N (Af , Σ² i )

i=1

θ 1 = {σ² 2i , i = 1, · · · , M }

• HMM for the images: p(f |z, θ 2 ) =

N Y

p(f j |z j , mj , Σj )

j=1

where z = {z j , j = 1, · · · , N } and where we assumed that f j |z j are independent. −→ θ 2 = {(mi k , σj2 k ), j = 1, · · · , N }

&

18

%

'

$

• PMRF for the labels: p(z) ∝

N Y

j=1



exp α

X

X

r ∈R s∈V(r )



δ(zj (r) − zj (s))

• Conjugate priors for the hyperparameters θ = (θ 1 , θ 2 ): θ = {{σ² 2i , i = 1, · · · , M }, {(mi k , σj2 k ), j = 1, · · · , M, k = 1, · · · , K}} p(mj k )

= N (mj k 0 , σj2 k 0 )

p(σj2 k )

= IG(αj0 , βj0 )

p(Σj k )

= IW(αj0 , Λj0 )

p(σ² i )

= IG(αi0 , βi0 )

• Joint posterior law of f , z and θ &

p(f , z, θ|g) ∝ p(g|f , θ 1 ) p(f |z, θ 2 ) p(z|θ 2 ) p(θ) 19

%

'

General MCMC sampling scheme

$

p(f , z, θ|g) ∝ p(g|f , θ 1 ) p(f |z, θ 2 ) p(z|θ 2 ) p(θ) Gibbs sampling: • Generate samples (f , z, θ)(1) , · · · , (f , z, θ)(N ) using ∼ p(f |g, z, θ),



f



z ∼ p(z|g, f , θ),



θ ∼ p(θ|g, f , z),

• Compute any statistics such as mean, median, variance, ... Difficulties: • No mixture, No convolution: • Mixture but No convolution: • Convolution but No mixture: • Mixture and Convolution:

&

g i = f i + ²i , i = 1, · · · , M PN g i = j=1 Aij f j + ²i , i = 1, · · · , M

g i = H i f i + ²i , i = 1, · · · , M PN g i = j=1 Aij H ij f j + ²i , i = 1, · · · , M 20

%

'

$

Examples of applications • No mixture, No convolution applications: – Multi channel image fusion and joint segmentation g i = f i + ²i ,

i = 1, · · · , M,

f i |z independent

– Hyperspectral image segmentation g i = f i + ²i ,

i = 1, · · · , M,

f i |z dependent

– Video movie segmentation with motion estimation g i = f i + ²i ,

i = 1, · · · , M,

f i |z i independent

• Mixture, No convolution applications: – Blind source (image) separation (BSS) and joint segmentation PN g i = j=1 Aij f j + ²i , i = 1, · · · , M, f i |z i independent • Convolution but No mixture applications: – Fourier synthesis in optical imaging – Single channel image restoration &

21

g = H(f ) + ²,

f |z

g = Hf + ²,

f |z

%

'

$

Images fusion and joint segmentation ´ (Olivier FERON)     gi (r) = fi (r) + ²i (r)

p(fi (r)|z(r) = k) = N (mi k , σi2 k )   Q  p(f |z) = i p(f i |z)

g1

g2 &

−→

b f 1

b z

b f 2 22

%

'

Joint segmentation of hyper-spectral images

$

(Adel MOHAMMADPOUR)   gi (r) = fi (r) + ²i (r), r ∈ R, or g i = f i + ²i , i = 1, · · · , M      p(f (r)|z(r) = k) = N (m , σ 2 ), k = 1, · · · , K i ik ik Q  p(f |z) = i p(f i |z)      m follow a Markovian model along the index i ik

&

23

%

'

Segmentation of a video sequence of images

$

(Patrice BRAULT)   gi (r) = fi (r) + ²i (r), r ∈ R, or g i = f i + ²i , or g = f + ²      p(f (r)|z (r) = k) = N (m , σ 2 ), k = 1, · · · , K i i ik ik Q  p(f |z) = i p(f i |z i )      z (r) follow a Markovian model along the index i i

&

24

%

'

Blind image separation and joint segmentation 

$

N X    gi (r) = Aij fj (r) + ²i (r) −→ g(r) = Af (r) + ²(r) −→ g = Af + ²     j=1   Q   p(g|f , A, Σ² ) = Q r ∈R p(g(r)|f (r), A) = r ∈R N (Af (r), Σ² ) 2  p(f (r)|z (r) = k) = N (m , σ ),  j j j j k  k  Q Q    p(f |z) = r ∈R j p(fj (r)|zj (r))     p(Aij ) = N (A0 ij , σ02 ij ) or p(vect(A)) = N (vect(A0 ), σ02 ij I)  P  b (r), Σ(r)) b p(f |g, z, θ, A) = N (f with  ∈R r     t −1 −1 −1 b  Σ A + Σ (r)) and Σ(r) = (A  z ²   ¡ t −1 ¢   f −1 b (r) = Σ(r) b A Σ² g(r) + Σz (r) mz (r)

 p(z(r)|g(r), θ, A) ∝ (p(g(r)|z(r), θ, A)) p(z(r)) with      t  p(g(r)|z(r), θ) = N (Am , AΣ A + Σ² )  z( r ) z( r )     p(A, Σ |f , g, θ) = N (A; A , Σ ) W(Σ −1 ; ν , Σ ) p p p ² ² ²p

&

25

%



 

 









































































































































































































































26

% &

$ '

Mixing

Segmentation

Separation

'

$

f &

b f

g

27

b z

%

'

Single channel image restoration g(r 0 ) =

Z

$

h(r 0 − r) f (r) dr + ²(r 0 ) −→ g = Hf + ²

Fourier synthesis inverse problem                     

g(ω) =

Z

exp [−j(ω.r)] f (r) dr + ²(ω) −→ g = Hf + ²

p(²) = N (0, Σ² ) −→ p(g|f ) = N (Hf , Σ² ) with Σ² = σ² 2 I p(f (r)|z(r) = k) = N (mk , σk2 ), b , Σ) b with p(f |z, θ, g) = N (f

k = 1, · · · , K

¡ t −1 ¢ t −1 −1 −1 −1 b b b and f = Σ H Σ² g + Σz mz Σ = (H Σ² H + Σz ) b = arg max {p(f |z, θ, g)} = arg min {J(f )} with Compute f f f 2 P kf k −mk 1k 1 2 J(f ) = σ2 kg − Hf k + k σ2

      ² k     p(z|g, θ) ∝ p(g|z, θ) p(z) with     t   , Σ ) with Σ = HΣ H + Σ² p(g|z, θ) = N (Hm g g z z     Use p(z|g, f , θ) ∝ p(g|f , z, θ) p(z) & 28

%

'

a)

e)

$

Simulation results

20

20

20

20

40

40

40

40

60

60

60

60

80

80

80

80

100

100

100

100

120 20

40

60

80

100

120

b)

120 20

40

60

80

100

120

c)

120 20

40

60

80

100

120

d)

120

20

20

20

20

40

40

40

40

60

60

60

60

80

80

80

80

100

100

100

100

120 20

40

60

80

100

120

f)

120 20

40

60

80

100

120

g)

120 20

40

60

80

100

120

h)

20

40

60

80

100

120

20

40

60

80

100

120

120

a) object, b) exact known support, c) support of the data, d) measured data, e) and f) Results when phase is measured: e) IFT and f) proposed method, g) and h) Results when the phase is not measured but we know the support of the object: g) by Gerchberg-Saxton h) by the proposed method. & 29

%

'

$

Wavelet domain Bayesian image processing g(r) = Af (r) + ²(r) −→ WT −→ g j (r) = Af j (r) + ²j (r) images

Hist. of images

Wavelet coeff.

300

Hist. of wavelet coeff. 2500

250 2000

200 1500

150

1000 100

500 50

0

0

50

100

150

200

250

0 −500

300

600

3000

500

2500

400

2000

300

1500

200

1000

100

500

0

0

50

100

150

200

250

0 −500

300

−400

−300

−200

−100

0

100

200

300

400

500

−400

−300

−200

−100

0

100

200

300

400

500

• multi-resolution computation • Wavelet coefficients can be classified and segmented in only K = 2 classes

&

30

%

'

$

f &

b f

g

31

(GM)

b f

(HMM)

%

'

Conclusion and works in progress

$

Bayesian approach & HMM are appropriate tools for many image processing problems • H. Snoussi : BSS in 1D and 2D either in pixel domain or Fourier transform domain • M. Ichir : BSS with mixture of Gamma and BSS in wavelet domain • S. Moussaoui : BSS for non negative sources with application in spectrometry • O. F´eron : Data and image fusion, Fourier synthesis and inverse problems in microwave imaging • P. Brault : Segmentation of images sequences either directly or in wavelet domain • A. Mohammadpour : Segmentation of hyper-spectral images, • Z. Chama : Image recovery from the Fourier phase (Fourier Synthesis) • F. Humblot : Obtaining a super-resolution image from a set of lower resolution images

&

32

%