bayesian segmentation of hyperspectral images - Ali Mohammad-Djafari

Spectral classification methods. (Spatial ... ACP, ACI and using classification and segmentation for better .... Expressions of likelihood, prior and posterior laws.
1MB taille 2 téléchargements 307 vues
'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

BAYESIAN SEGMENTATION OF HYPERSPECTRAL IMAGES

$

Adel Mohammadpour, Nadia Bali and Ali Mohammad-Djafari

&

Laboratoire des Signaux et Syst`emes CNRS-ESE-UPS Sup´elec, Plateau de Moulon 91192 Gif-sur-Yvette, FRANCE.

[email protected] [email protected] [email protected] 1

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Contents

$

• Introduction to hyperspectral images • Spectral classification methods (Spatial distribution of spectra is neglected) • Spatial classification methods (Spectral shapes of the voxels are neglected) • Modeling for segmentation methods which account for both spatial and spectral structures of the data • Bayesian approach and general MCMC Gibbs sampling • Comparison of the proposed approach with classical methods • Proposed algorithm • Simulation results

• Conclusions &

2

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

Introduction to hyperspectral images

&

3

21-23 Novembre, 2006

$

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Classification, segmentation and data reduction

$

• Hyperspectral data : g(ω, r) – A set of spectra : gr (ω) – A set of images : gω (r) • Redundancy due to spectral and spatial structure • Main objectif 1 : Find the type of materials in a given position (labeling) – Classification – Segmentation • Main objectif 2 : Data reduction and compression – ACP, ACI and using classification and segmentation for better compression.

– Proposing a method which does data reduction and segmentation at the same time. & 4

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

Generating simulated data

21-23 Novembre, 2006

$

Synthetic data 1:

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

5

&

10

15

20

25

30

35

4 classes, 32 images (64x64) 5

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

Generating simulated data

21-23 Novembre, 2006

$

Synthetic data 2:

7000

6000

5000

4000

3000

2000

1000

0

0

20

&

40

60

80

100

120

8 classes, 112 images (128x128) 6

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Spectral classification methods

$

Classification

• Each spectral line is considered as a point in a vectorial space • Different classification methods are used: K-means, mixture of gaussians, ...

• Spatial distribution of the spectra is neglected & 7

%

'

A. Mohammad-Djafari & al.

&

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

1

$

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

32 images

0

5

Original

10

15

20

25

30

35

30

35

4 classes 1.4

1.2

1

0.8

0.6

0.4

0.2

0

32 images

Estimated 8

0

5

10

15

20

25

4 classes

%

'

A. Mohammad-Djafari & al.

&

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

7000

$

6000

5000

4000

3000

2000

1000

0

112 images

0

20

Original

40

60

80

100

120

100

120

8 classes 6000

5000

4000

3000

2000

1000

0

112 images

Estimated 9

0

20

40

60

80

8 classes

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Spatial classification methods

$

• Each image is considered as a point in a vectorial space • Different classification methods are used: K-means, mixture of gaussians, ...

• Spectral structures of the image pixels are neglected & 10

%

'

A. Mohammad-Djafari & al.

&

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

1

$

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

32 images

0

5

Original

10

15

20

25

30

35

30

35

4 classes 1.4

1.2

1

0.8

0.6

0.4

0.2

0

8 images

Estimated 11

0

5

10

15

20

25

4 classes

%

'

A. Mohammad-Djafari & al.

&

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

7000

$

6000

5000

4000

3000

2000

1000

0

112 images

0

20

Original

40

60

80

100

120

100

120

8 classes 7000

6000

5000

4000

3000

2000

1000

0

8 images

Estimated 12

0

20

40

60

80

8 classes

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Modelling for accounting for both spatial and spectral structures 50

50

50

50

50

50

100

100

100

100

100

100

150

150

150

150

150

150

200

200

200

200

200

200

250

250

250

250

250

250

300

300

300

300

300

300

350

350

350

350

350

350

400

400

400

400

400

400

450

450

450

450

450

450

500

500

500

500

500

100

200

300

400

500

600

100

200

300

400

500

gi (r) = fi (r) + ǫi (r),

600

100

200

300

400

500

600

100

i = 1, · · · , M

200

300

400

500

600

500 100

200

300

400

500

600

100

200

300

400

500

600

Segmentation:

g(r) = {gi (r), i = 1, M }

– Hidden variables rep. regions

g(r) = f (r) + ǫ(r)

z(r) = k, k = 1, · · · , K

gi = {gi (r), r ∈ R}

Rk = {r : z(r) = k}, R = ∪k Rk

g = {gi (r), i = 1, M }

– Homogeneity in regions:

g =f +ǫ &

$

p(fi (r)|z(r) = k) = N (mi k , σi2 k ) 13

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Modelling for accounting for both spatial and spectral structures   g (r) = f (r) + ǫ (r), i = 1, · · · , M i i i  p(fi (r)|z(r) = k) = N (mi k , σ 2 ) ik

$

k=4

k=3

k=2

k=1

Prior hypothesis about fi (r) :

k=4 k=3

• Pixels values of fi (r) in different regions of an image are independent. They may share however the same parameters θik = (mi k , σi2 k )

k=2

k=1

k=4 k=2

k=3

k=1

• For pixels values in a given region of an image, two possibilities: – i.i.d.:

p(fj (r)|zj (r) = k) = N (mj k , σj2 k ) p(fj (r), r ∈ Rj k ) = N (mj k 1, σj2 k I)

– Markovien:

&

p(fj (r), r ∈ Rj k ) = N (mj k 1, Σj k ) 14

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Modelling for accounting for both spatial and spectral structures   g (r) = f (r) + ǫ (r), i = 1, · · · , M i i i  p(fi (r)|z(r) = k) = N (mi k , σ 2 )

$

ik

k=4

Pixels along the channels represent spectra • A Markovien model for fi (r): p(fi (r)|z(r) = k, fi−1 (r)) =

k=3 k=2 k=1

k=4

N (ψik fi−1 (r), σi2 k )

k=3 k=2

k=1

fik (r) = ψik fi−1,k (r) + ηik

∼ AR(1) k=4

• A Markovien model for the means:

k=2

k=3

k=1

p(fi (r)|zi (r) = k) = N (mi k , σi2 k ) mi k = φk mi−1,k + ηk

&

∼ AR(1) 15

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Modeling the labels p(fj (r)|zj (r) = k) =

N (mj k , σj2 k )

−→ p(fj (r)) =

X

$

P (zj (r) = k) N (mj k , σj2 k )

k

• Independent Gaussian Mixture model (IGM), where zj = {zj (r), r ∈ R} are assumed to be independent and X Y P (zj (r) = k) = pk , with pk = 1 and p(zj ) = pk k

k

• Contextual Gaussian Mixture model (CGM): zj Markovien   X X p(zj ) ∝ exp α δ(zj (r) − zj (s)) r∈R s∈V(r)

which is the Potts Markov random feild (PMRF). The parameter α controls the mean value of the regions’ sizes. & 16

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Expressions of likelihood, prior and posterior laws

$

gi (r) = fi (r) + ǫi (r) i = 1, · · · , M

−→

g =f +ǫ

θ 1 = {σǫ 2i , i = 1, · · · , M },

−→

Σǫ i = σǫ 2i I

gi = fi + ǫ i , • Likelihood:

p(g|f , θ 1 ) =

M Y

p(g|f , Σǫ i ) =

i=1

• HMM for the images:

M Y

N (f , Σǫ i )

i=1

θ 2 = {(mi k , σi2 k ), j = 1, · · · , M }

– Markovian model for fi |z: p(f |z, θ2 ) = p(f1 |z, mi k , σi2 k )

M Y

p(fi |fi−1 , z, mi k , σi2 k )

i=2

– Markovian model for mi k :

&

p(f |z, θ 2 ) =

M Y

p(fi |z, mi k , σi2 k )

i=1

but

mi k = φk mi−1,k + ηik ∼ AR(1) 17

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

• PMRF for the labels: 

p(z) ∝ exp α

X X r∈R s∈V(r)

$



δ(z(r) − z(s))

• Conjugate priors for the hyperparameters θ = (θ 1 , θ 2 ): θ = {{σǫ 2i , i = 1, · · · , M }, {(mi k , σi2 k ), i = 1, · · · , M, k = 1, · · · , K}} p(σǫ i )

= IG(αi0 , βi0 )

p(mi k ) = N (φk mi−1 k , σi2 k 0 ) p(σi2 k )

= IG(αi0 , βi0 )

p(Σi k )

= IW(αi0 , Λi0 )

• Joint posterior law of f , z and θ

&

p(f , z, θ|g) ∝ p(g|f , θ 1 ) p(f |z, θ 2 ) p(z|α) p(θ) 18

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

$

General MCMC sampling scheme p(f , z, θ|g)

∝ p(g|f , θ 1 ) p(f |z, θ2 ) p(z|θ2 ) Q ∝ ( i p(gi |fi , θ1 )) p(f |z, θ2 ) p(z|α) p(θ)

  θ = {σ 2 , i = 1, · · · , M } 1 ǫi θ = (θ 1 , θ 2 )  θ 2 = {(mi k , σ 2 ), i = 1, · · · , M, k = 1, · · · , K}} ik

Gibbs sampling:

• Generate samples (f , z, θ)(1) , · · · , (f , z, θ)(N ) using ∼ p(f |g, z, θ) ∝ p(g|f , z, θ) p(f |z)



f



z ∼ p(z|g, f , θ) ∝ p(g|f , z, θ) p(f |z) p(z|α)



θ ∼ p(θ|g, f , z)

• Compute any statistics such as mean, median, variance, ...

&

19

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

Comparison with classical methods

Proposed   Observation model: accounts for noise Observation model: no noise       gi (r) = fi (r) + ǫi (r), r ∈ R, gi (r) = fi (r)            Hidden Markov Model: Ind. Gaussian Mixture model:     2 p(fi (r)|z(r) = k) = N (mi k , σi k ) p(fi (r)|z(r) = k) = N (mi k , σi2 k ) i h P P  p(z) ∝ exp α r∈R s∈V(r) δ(z(r) − z(s)) z(r)⊥z(s), s 6= r,     Q Q   p(f |z) = i p(fi |z) p(f |z) = i p(fi |z)           No correlation in diff. channels:   Accounts for correlation in diff. channels:     mi k ⊥mj k , i 6= j mi k = φk mi−1 k + ηik

&

$

Classical

20

%

'

A. Mohammad-Djafari & al.

Data

Journ´ ees ACI2M, Bordeaux

Original

1

Kmeans1

21-23 Novembre, 2006

Kmeans2

$

BFJsegment

1.4

1.4

1.4

1.2

1.2

1.2

1

1

1

0.8

0.8

0.8

0.6

0.6

0.6

0.4

0.4

0.4

0.2

0.2

0.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0

5

10

&

15

20

25

30

35

0

0

5

10

15

21

20

25

30

35

0

0

5

10

15

20

25

30

35

0

0

5

10

15

20

25

30

35

%

'

A. Mohammad-Djafari & al.

Data

Journ´ ees ACI2M, Bordeaux

Original

1

21-23 Novembre, 2006

Kmeans1

Kmeans2

1.2

BFJsegment

0.5

1

0.9

0.9 1

0.4

0.8

0.3

0.6

0.2

0.4

0.1

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.2

0

0

−0.1

−0.2

−0.2

0.3

0.2

0.2

0.1

0

$

0.1

0

10

20

&

30

40

50

60

0

10

20

30

22

40

50

60

0

10

20

30

40

50

60

0

0

10

20

30

40

50

60

%

'

A. Mohammad-Djafari & al.

Data

Journ´ ees ACI2M, Bordeaux

Original

6000

Kmeans1

Kmeans2

7000

7000

6000

5000

5000

5000

4000

4000 4000

4000

3000

3000 3000

3000

2000

2000 2000

1000

0

$

BFJsegment

6000

6000

5000

21-23 Novembre, 2006

2000

1000

1000

0

10

20

&

30

40

50

60

0

0

10

20

30

23

40

50

60

0

1000

0

10

20

30

40

50

60

0

0

10

20

30

40

50

60

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

$

DataOriginalKmeans1Kmeans2BFJsegment

&

24

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

$

DataOriginalKmeans1Kmeans2BFJsegment

&

25

%

'

A. Mohammad-Djafari & al.

Journ´ ees ACI2M, Bordeaux

21-23 Novembre, 2006

$

DataOriginalKmeans1Kmeans2BFJsegment

&

26

%