BFP620 - Exvacuo

Apr 20, 2007 - Gms = 21.5 dB at 1.8 GHz. Gma = 11 dB at 6 GHz .... 200. P tot. Permissible Pulse Load RthJS = ƒ(tp). 10. -7. 10. -6. 10. -5. 10. -4. 10. -3. 10. -2.
92KB taille 7 téléchargements 157 vues
BFP620 NPN Silicon Germanium RF Transistor • High gain low noise RF transistor

3

• Provides outstanding performance

2

4

for a wide range of wireless applications

1

• Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.7 dB at 1.8 GHz Outstanding noise figure F = 1.3 dB at 6 GHz • Maximum stable gain Gms = 21.5 dB at 1.8 GHz Gma = 11 dB at 6 GHz • Gold metallization for extra high reliability • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type BFP620 1Pb-containing

Marking R2s 1=B

Pin Configuration 2=E

3=C

4=E

-

Package -

SOT343

package may be available upon special request

2007-04-20 1

BFP620 Maximum Ratings Parameter

Symbol

Collector-emitter voltage

VCEO

Value

Unit V

TA > 0 °C

2.3

TA ≤ 0 °C

2.1

Collector-emitter voltage

VCES

7.5

Collector-base voltage

VCBO

7.5

Emitter-base voltage

VEBO

1.2

Collector current

IC

80

Base current

IB

3

Total power dissipation1)

Ptot

185

mW

Junction temperature

Tj

150

°C

Ambient temperature

TA

-65 ... 150

Storage temperature

T stg

-65 ... 150

mA

TS ≤ 95°C

Thermal Resistance Parameter

Symbol

Value

Unit

Junction - soldering point 2)

RthJS

≤ 300

K/W

Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter

Unit

min.

typ.

max.

2.3

2.8

-

V

ICES

-

-

10

µA

ICBO

-

-

100

nA

IEBO

-

-

3

µA

hFE

110

180

270

DC Characteristics Collector-emitter breakdown voltage

V(BR)CEO

IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 7.5 V, V BE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain

-

IC = 50 mA, VCE = 1.5 V, pulse measured 1T

S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance

2007-04-20 2

BFP620 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT

-

65

-

Ccb

-

0.12

0.2

Cce

-

0.22

-

Ceb

-

0.46

-

GHz

IC = 50 mA, VCE = 1.5 V, f = 1 GHz Collector-base capacitance

pF

VCB = 2 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure

dB

F

IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt Power gain, maximum stable1)

-

0.7

-

-

1.3

-

G ms

-

21.5

-

dB

G ma

-

11

-

dB

IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2

Transducer gain

dB

IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 1.8 GHz

-

20

-

f = 6 GHz

-

9.5

-

IP 3

-

25.5

-

P-1dB

-

14.5

-

Third order intercept point at output2)

dBm

VCE = 2 V, I C = 50 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 50 mA, VCE = 2 V, ZS =ZL=50 Ω, f = 1.8 GHz 1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 1G

2007-04-20 3

BFP620 SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1

0.22 1000 2 2 2 2.707 250.7 1.43 2.4 0.6 0.2 0.5 3

fA V V -

2 -0.0065

-

BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = NK = FC = KF = TITF2

Ω fF ps A V ns -

425 0.25 50 10 3.129 0.6 0.75 10 0 0.5 128.1 -1.42 0.8 7.291E-11 1.0E-5

A mA Ω V deg fF -

NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM

1.025 21 1 18 1.522 2.364 0.3 1.5 124.9 1 0.52 1.078 298

fA pA mA Ω V fF V eV K

All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit: CBS

RBS

CBCC

LCC

C BFP620_Chip S

B

B

LBB

LBC

CBE C

RCS E

LCB

CCS

RES CES

LEC

CBEI

CCEI LEB CBEO

CCEO

T = 25°C Itf = 2400* ( 1 - 6.5e-3 * (T-25) + 1.0e-5 * (T-25)^2 )

E

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com

C

LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CCEO = CBEO = CCEI = CBEI = RBS = RCS = RES =

60 50 15 764.5 725.4 259.6 98.4 55.9 140 54 50 106.5 106.7 132.4 99.6 1200 1200 300

pH pH pH pH pH pH fF fF fF fF fF fF fF fF fF Ω Ω Ω

Valid up to 6GHz

2007-04-20 4

BFP620 Total power dissipation Ptot = ƒ(TS)

Permissible Pulse Load RthJS = ƒ(t p)

10 3

200 mW

160

K/W

RthJS

Ptot

140 120

D = 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0

10 2

100 80 60 40 20 0 0

20

40

60

80

100

120 °C

10 1 -7 10

150

10

-6

10

-5

10

-4

10

-3

10

-2

°C

TS

10

tp

Permissible Pulse Load

Collector-base capacitance Ccb= ƒ(VCB)

Ptotmax/P totDC = ƒ(tp)

f = 1MHz

10 1

0.4

Ptotmax / PtotDC

pF

CCB

0.3

D=0 0.005 0,01 0,02 0,05 0,1 0,2 0,5

0.25

0.2

0.15

0.1

0.05 10 0 -7 10

10

-6

10

-5

10

-4

10

-3

10

-2

°C

10

0 0

0

tp

1

2

3

4

5

V

7

VCB

2007-04-20 5

0

BFP620 Third order Intercept Point IP3=ƒ(IC)

Transition frequency fT= ƒ(IC)

(Output, ZS = ZL=50 Ω)

f = 1GHz

VCE = parameter, f = 900MHz -

VCE = Parameter in V

27

65 GHz

2.3V

dBm

55 21

50 45

18

1

fT

IP3

1.3 to 2.3

1.8V

15

1.3V

40 35 30

12 0.8V

25

9

0.8 0.5

20 15

6

0.3

10 3 5 0 0

10

20

30

40

50

60

70

80 mA

0 0

100

10

20

30

40

50

60

70

80 mA

IC

100

IC

Power gain Gma, Gms = ƒ(IC)

Power Gain Gma, Gms = ƒ(f),

VCE = 1.5V

|S21|² = f (f)

f = Parameter in GHz

VCE = 1.5V, I C = 50mA 55

30 dB

dB 0.9

26

45 40

22

G

G

24

1.8

35

20 30 2.4

18

Gms

25 3

16

20

14

4

12

8 0

15

5 6

10 10

20

30

40

50

60

70 mA

Gma

|S21|²

10 5 0

90

IC

1

2

3

4

GHz

6

f

2007-04-20 6

BFP620 Power gain Gma, Gms = ƒ (VCE) IC = 50mA f = Parameter in GHz 30 0.9 dB 1.8 2.4

20

G

3 4 5 6

15

10

5

0

-5 0.2

0.6

1

1.4

1.8

V

2.6

VCE

2007-04-20 7

Package SOT343

BFP620

Package Outline 0.9 ±0.1

2 ±0.2 0.1 MAX.

1.3

0.1 A

1

2

0.1 MIN.

0.15

1.25 ±0.1

3 2.1 ±0.1

4

0.3 +0.1 -0.05

+0.1

0.15 -0.05 +0.1 0.6 -0.05

4x 0.1

0.2

M

M

A

Foot Print

1.6

0.8

0.6

1.15 0.9

Marking Layout (Example) Manufacturer

2005, June Date code (YM)

BGA420 Type code

Pin 1

Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2

2.3

8

4

Pin 1

2.15

1.1

2007-04-20 8

BFP620 Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please! The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ).

Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

2007-04-20 9