Contents - CT GTTP

GIPAC - Gabinete de Informática e Projecto Assistido por Computador, Lda. Rua Carlos ...... abscissa (horizontal ordinate) and must be told œ via ”Formula' ...
526KB taille 23 téléchargements 346 vues
RM2000/GP2000 Static and Dynamic Analysis of Spaceframes

Procedure Guide TDV Ges.m.b.H. Dezember 2001

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

Disclaimer and Copyright

Disclaimer Much time and effort have gone into the development and documentation of RM2000 and GP2000. The programs have been thoroughly tested and used. The user accepts and understands that no warranty is expressed or implied by the developers or the distributors on the accuracy or the reliability of the program. The user must understand the assumptions of the program and must apply engineering knowledge and skill to independently verify the results.

Copyright The computer programs RM2000, GP2000 and all the associated documentation are proprietary and copyrighted products. Ownership of the program and the documentation remain with TDV Austria. Use of the program and the documentation is restricted to the licensed users. Unlicensed use of the program or reproduction of the documentation in any form, without prior written authorization from TDV is explicitly prohibited. RM2000 and GP2000 © Copyright and support in Central Europe Tcl © Copyright 1987-1994 The Regents of the University of California Tcl © Copyright 1992-1995 Karl Lehenbauer and Mark Diekhans. Tcl © Copyright 1993-1997 Bell Labs Innovations for Lucent Technologies Tcl © Copyright 1994-1998 Sun Microsystems, Inc. Microsoft Windows © Copyright Microsoft Corporation

All rights reserved by TDV Ges.m.b.H. Austria

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

Support RM2000 and GP2000 © Copyright and support in Central Europe: TDV - Technische Datenverarbeitung Gesellschaft m.b.H. Heinz Pircher und Partner Gleisdorfer Gasse 5 A-8010 GRAZ, AUSTRIA Tel.: +43-316-821531-0 E-mail: [email protected]

Fax: +43-316-823552-12 Internet: http://www.tdv.at

Support in Northern Europe: tda - Teknisk Data AS Ostensjoveien 18 N-0661 OSLO, NORWAY Tel.: +47-2272-3440 E-mail: [email protected]

Fax: +47-2272-0959 Internet: http://www.tda-as.no

Support in Portugal and Spain: GIPAC - Gabinete de Informática e Projecto Assistido por Computador, Lda. Rua Carlos Seixas 176, 1° Dto. P-3030-177 COIMBRA, PORTUGAL Tel.: +351-239-701 706 Fax: +351-239-712 673 E-mail: [email protected] Internet: http://www.gipac.pt Support in Korea: BT Consultants Co., LTD. 13th Floor, Yuksung Bldg., #706-25 Yeoksam-dong, Kangnam-gu SEOUL 135-080, KOREA Tel.: +82-2-564-0081 E-mail: [email protected]

Fax: +82-2-539-0067 Internet: http://www.dti.co.kr

Support in the United States and Canada: ANATECH - Consulting Engineers Linking Theory and Practice 5435 Oberlin Drive San Diego, CA 92121, U.S.A. Tel.: +1-858-455-6350 E-mail: [email protected]

Fax: +1-858-455-1094 Internet: http://www.anatech.com

Support in Singapore: QE Design Systems (S) Pte. Ltd. 24 Peck Seah Street #06-08/10 Nehsons Building Singapore 079314 Tel.: +65-224-2883 E-mail: [email protected]

Fax: +65-221-9928

All rights reserved by TDV Ges.m.b.H. Austria © TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000

Contents

Procedure Guide

I

Contents CONTENTS.................................................................................................................................................I PIER SUPPORT DEFINITION USING GP2000.................................................................................... 1 MULTIPLE BEARING/SPRING SUPPORT DEFINITION USING GP2000 .................................... 2 MULTIPLE BEARING SUPPORT DEFINITION FOR TWIN GIRDERS USING GP2000............ 4 MULTIPLE BRG SUP DEFN - TWIN GIRDERS PLUS TWIN PIERS - GP2000 ............................. 6 CROSS SECTION WITH VARIABLE DEPTH USING GP2000......................................................... 9 ORTHOGONAL GRILLAGE DEFINITION USING GP2000........................................................... 10 COMPOSITE DEFINITION USING GP2000 ...................................................................................... 12 TENDON DEFINITION & CALCULATION USING RM2000 ......................................................... 13 CREEP & SHRINKAGE CALCULATION USING RM2000............................................................. 15 LOAD MANAGE DEFINITION USING RM2000............................................................................... 17 STAGE DEFINITION & CALCULATION USING RM2000............................................................. 18 FIBRE STRESS CHECK CALCULATION ......................................................................................... 19 NONLINEAR TEMPERATURE GRADIENT CALCULATION ...................................................... 20 DEFINING A LIVE LOAD USING RM2000........................................................................................ 22 USING ‘ADDCON’ (KASP) WITH A SIMPLE EXAMPLE............................................................... 24 USING ‘ADDCON’ WITH A SIMPLE CABLE STAY BRIDGE EXAMPLE.................................. 25 RESPONSE SPECTRUM CALCULATION USING RM2000 ........................................................... 27 ULTIMATE MOMENT CHECK........................................................................................................... 28 PLOTTING THE RESULTS IN RM2000 ............................................................................................. 30

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000

Pier Support Definition using GP2000

Procedure Guide

1

Pier Support Definition using GP2000 Node 111 Support Spring 1205 „CP0“ Node 1205

Then continue as follows: Support Spring 1200 (see Multiple Bearing FC)

Add Column

Insert Segment

Assign CS and Numbering

Cross-Section

- Choose a name - Change typ to “Pier” - Check/modify Reference Segment - Check/modify Segment Point - Choose the Connection Point (CP0) Repeat assigning a cross-section and numbering procedure for the Column Attention: The height “0” is the top of the support/column! See Multiple Bearing FC

Add Connection (Spring 1205) Reference Point Group Segment-List

Choose the required Column segment, change to the segment list and choose the segment point to be connected (usually last segment point)

Insert a new Connection

Spring Between 2 Nodes

Define the 1st Connection Point (LH Window) Define the 2nd Connection Point (RH Window) Constants

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Element Number (1205 here) Node 1: (1205 here), not eccentric Node 2: (111 here), eccentric Heinz Pircher und Partner

RM2000/GP2000 Multiple Bearing/Spring Support Definition using GP2000 Procedure Guide

2

Multiple Bearing/Spring Support Definition using GP2000 AXIS 1 Node 101

The element start and end for the eccentric springs are defined by the directions CP0 → CP1 or vice versa and CP0 → CP2 or vice versa N.B. CP1 is the position of the bearing element 1101 CP2 Is the position of the bearing element 1102

Y (Node 1100) „CP0“

Z „CP1“ (Spring Element 1101) Spring Element 1100

„CP2“ (Spring Element 1102) Node 0

Supposition: Axis, Cross Section for girder plus Segment numbering and assignment and Part numbering and assignment already made Add Connection Points

Define the Connection between Top of Spring Support (Spring 1100) and Ground

Cross-Section

Reference Point Group

Select Reference Point Group and insert a new one – called “Supports” – for example.

Define the Connection Points

Choose a reference point icon, select the required intersection point, choose “Connection Point” from the list and assign a name say “CP0” (define the support points CP0, CP1 and CP2).

Segment-List

Connection

Insert a new Connection

Choose the axis segment, change to the segment list and select the segment point for the spring connection. “Station ‘0’ for example

Select Connection Choose “Insert” in the new input window

Spring-0

LH Window – Segment Point 1 Part 1 Check/modify the segment point and part to be connected Select “Spring-0” ( for connection to ground

Define the 1st Connection Point (LH Window)

Select “CP0” (located at the spring element end node) for the connection point in “Connection window” N.B. The connection to node ‘0’ is automatically assigned

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000 Multiple Bearing/Spring Support Definition using GP2000 Procedure Guide

3

Select Constants

Define eccentric connection for Spring 1101

Define eccentric connection for Spring 1102

Select Constants to modify spring stiffness , element numbers and eccentric connections

Number the Element

Enter the Element number (1100 for the spring from ground (Node ‘0’) to CP0 (Node ‘1100’) De-select ‘Conn. To node for part’ for Node 2 and enter ‘1100’ for the node.

Change Values

Change default spring and support constants if necessary. Confirm with OK twice. N.B. The default orientation for the spring is: The local X-direction vertical: Vertical support – Cx=1e8kN/m

Insert a new Connection

Choose “Insert” to define the connection for spring element 1101. (Element 1101 is located at position ‘CP1’) - Connect node 1100 to node 101 with eccentric connections.

Spring Between 2 Nodes

LH Window – Segment Point 1 Part 1 Check/modify the segment point and part to be connected Select Spring between 2 Nodes.

Define the 1st Connection Point

Select “CP0” (located at the spring element –toground end node) for the connection point in the “Connection Point window”

Define the 2nd Connection Point

Select “CP1” (located at the LH bearing posn ) for the connection point in the “Connection Point window”

Constants

Select Constants to modify spring stiffness , element numbers and eccentric connections.

Number the Element

Put in the Element number (1101) for the LH Bearing (from CP0 (Node ‘1100’) to girder element node ‘101’). Select: Conn. to “node for part” for node 2. ( The end node (node 2) of the spring will then be automatically connected to the girder node 101) De-select: Conn. to “node for part” for node 1 and enter ‘1100’ for the start node number for node 1

Repeat procedure

Repeat the above procedure for RH Bearing Element (number 1102) Spring between 2 nodes Connn pnt CP0 – LH window Connn pnt CP2 – RH window Element 1102 De-select for node 1 enter ‘1100’

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000Multiple Bearing Support Definition for twin girders using GP2000 Procedure Guide

4

Multiple Bearing Support Definition for twin girders using GP2000 Part 1

Part 2

AXIS 1

101

201

The element start and end for the eccentric springs are defined by the directions CP0 → CP1 or vice versa and CP0 → CP2 or vice versa N.B. CP1 is the position of the bearing element 1101

Y Node 1100 „CP0“

Z

„CP2“(Spring Element 1102)

„CP1“ (Spring Element 1101) Spring Element 1100

Supposition: Axis, Cross Section for girder plus Segment numbering and assignment and Part numbering and assignment already made

Node 0

Add Connection Points

Define the Connection between Top of Spring Support (Spring 1100) and Ground

Cross-Section

Reference Point Group

Select Reference Point Group and insert a new one – called “Supports” – for example.

Define the Connection Points

Choose a reference point icon, select the required intersection point, choose “Connection Point” from list and assign a name say “CP0” (define the connection points CP0, CP1 and CP2).

Segment-List

Connection

Insert a new Connection

Choose the axis segment, change to the segment list and select the segment point for the spring connection. “Station ‘0’ for example

Select connection Choose “Insert” in the new input window

Spring-0

LH Window – Segment Point 1 Part 1 Check/modify the segment point and part to be connected Select “Spring-0” ( for connection to ground)

Define the 1st Connection Pint (LH Window)

Select “CP0” (located at the spring element end node) for the connection point in the “Connection Point window” N.B. The connection to node ‘0’ is automatically assigned

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000Multiple Bearing Support Definition for twin girders using GP2000 Procedure Guide

Define eccentric connection for Spring 1102

Define eccentric connection for Spring 1101

5

Select Constants

Select Constants to modify the spring stiffness , element numbers and eccentric connections.

Number the Element

Enter the Element number (1100 for the spring from ground (Node 0) to CP0 (Node 1100) Deselect ‘Conn. to node part’ for Node 2 & enter 1100 for the node.

Change Values

Change default spring and support constants if necessary. Confirm with OK twice. N.B. The default orientation for the spring is: The local X-direction vertical: Vertical support – Cx=1e8kN/m

Insert a new Connection

Choose “Insert” to define the connection for the spring element 1102. (Element 1102 is located at posn “CP2”) – Connect node 1 to node 101 with eccentric conections.

Spring Between 2 Nodes

LH Window – Segment Point 1 Part 1 Check/modify the segment point and part to be connected Select “Spring between 2 Nodes”.

Define the 1st Connection Point (LH Window)

Select CP0 ( located at the spring element end node) for the connection point in the „Connection point window“ and set Part to „1“.

Define the 2nd Connection Point (RH Window)

Select CP2 ( located at the RH bearing posn ) for the connection point in the „Connection point window“ and Change Part Number – set Part to „2“.

Constants

Select constants to modify spring stiffness, element numbers and eccentric connections.

Number the Element

Put in the Element number (1102) for the RH Bearing (from CP0 (Node ‘1100’) to the girder ‘part 2’ element node ‘102’). Select: Conn. to “node for part” for node 2. ( The end node (node 2) of the spring will then be automatically connected to the girder part node 102) De-select: Conn.. to “node for part” for node 1 and enter ‘1100’ for the start node number for node 1

Repeat procedure

Repeat the above procedure for the LH Bearing Element (number 1101) • Spring between 2 nodes • Connn pnt CP0 and Part ‘1’– LH window • Connn pnt CP2 and Part ‘1’– RH window • Element 1101 De-select “Conn. To…for node 1 enter ‘1100’

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000Multiple Brg Sup defn - twin girders plus twin piers - GP2000 Procedure Guide

6

Multiple Brg Sup defn - twin girders plus twin piers - GP2000 Part 1

Part 2

AXIS 1

101

201

The element start and end for the eccentric springs are defined by the directions CP1 → 101 or vice versa and CP2 → 102 or vice versa

N.B. CP1 is the position of the bearing element 1101 CP2 Is the position of the bearing element 1102

Y Z „CP1“ (Spring Element 1103)

Node 1103

Node 1113

Element 1112

Element 1102 Node 1102

Node 1112

Element 1101

Element 1111

Node 1101

Node 1111 Spring Element 1100

Spring Element 1110

Node 0

Define CP1 & CP2 the Main Girder Connection Points

Define the Pier Segments 2 & 3

„CP2“ ((Spring Element 1113)

Node 0

Cross-Section

Supposition: Main Girder Axis and segment, Cross Section for the girder plus the cross section for the piers plus the Segment numbering and assignment and Part numbering and assignment for the main girder axis already made. (N.B. The Pier cross section must be defined with the intersection of the two main axes (purple lines) in the centre of the section)

Select the girder cross section

Reference Point Group

Select the main segment then select Reference Point Group and insert a new one – called “Supports” – for example.

Define the Connection Points

Choose a ref. point icon, select the required intersection point on the girder cross sect, choose “Connection Point” from list and assign a name say “CP1” (define the connn points CP1 and CP2 at the centre of each beam soffit).

Segment

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Select “Segment” and define the segments for all the piers – say Segments 2 & 3 for the twin Piers at “Main Girder” segment 1 segment point 1 and segments 3 & 4 for the twin piers at “Main Girder” segment 1 segment point 6. • N.B. The “Main Girder” segment 1 must have been completely defined before the new segments can be properly specified. • Select the ‘Type’ pull-down-menue arrow and choose “Pier” • Assign the connection point for this segment to the “Main Girder” segment 1. • Select the ‘Connection Point’ pull-down-menue arrow and choose “CP2” for seg 3 (“CP1” for seg 2) Heinz Pircher und Partner

RM2000/GP2000Multiple Brg Sup defn - twin girders plus twin piers - GP2000 Procedure Guide

7 Segment Points

Assign Pier cross section &

• •

Choose the segment from the segment list ( segment 2) Select the segment icon • Insert the segments points for the Pier at segment 2 N.B. “height 0” is at the top of the pier – the other segment points have negative values – say Pier 1 connection to ground is at height –10 and top is at height 0 in steps of 5 metres. Select the ‘Edit’ icon and assign the pier cross section to the segment points. Choose ‘Parts’ and then the ‘Edit’ icon Enter the material type, and the start element number and node numbers Element No 1101

Repeat

Add Connection Points

End Node 2

Repeat the above procedure for all the piers located on the respective segments.

Segment Connection

Define the connection between the pier segment and the “Main Girder” segment 1. Select the ‘Pier Segment’ for the connection definition. say segment 3

Segment

Choose ‘Segment list’ and then the place on the segment list that the connection is to be made: “Segment point ‘3’ – node 1103 for example for the bearing connection

Segment-List

Connection

Insert a new Connection

Spring between 2 nodes st

Define the 1 Connection Point

Define the 2nd Connection Point © TDV – Technische Datenverarbeitung Ges.m.b.H.

Start Node 1

Select connection Choose “Insert” in the new input window LH Window – Segment Point 3 Part 1 Check/modify the segment point and part to be connected. (Part 1 point 3) Select “Spring between 2 nodes” The connection to the node at the top of the pier is automatically assigned if the correct segment point is chosen – Part 1 Point 3 in this example (see above). RH Window – Segment Point 1 Part 2 Check/modify the segment point and part to be connected. • Select the ‘Connection Point’ pull-down-menu arrow and choose “CP2” for segment 3 (“CP1” for segment 2) • Select the correct part – part 2 Heinz Pircher und Partner

RM2000/GP2000Multiple Brg Sup defn - twin girders plus twin piers - GP2000 Procedure Guide

Define eccentric connection for Spring 1110 to ground

8

Select Constants

Select Constants to modify the spring stiffness , element numbers and eccentric connections.

Number the Element

Enter the Element number (1113 for the spring from Node 1113 of the Pier (Node 1) to Node 201 on the main girder (Node ‘2’) Select ‘Conn. to node part’ for Node 1 & for Node 2.

Change Values

Change default spring and support constants if necessary. Confirm with OK twice. N.B. The default orientation for the spring is: The local Xdirection vertical: Vertical support – Cx=1e8kN/m

Insert a new Connection

Close the connection window & select point 1 in the segment list.

Connection

Choose connection and then choose “Insert” to define the connection for the spring element 1110. (Spring element to ground)

Spring -0

LH Window – Segment Point 1 Part 1 Check/modify the segment point and part to be connected Select ‘Spring –0’ for the ground connection.

Constants

Select Constants to modify spring stiffness , element numbers and eccentric connections.

Number the Element

Repeat procedure

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Put in the Element number (1110) for the spring connection to ground for the pier at segment 3. De-select: Conn.. to “node for part” for node 2 and enter ‘1111’ for the end node number for node 2 Repeat the above procedure for the LH Bearing Element (number 1103) and the ground connection (number1100) on segment 2 • Spring between 2 nodes • Connn pnt CP1 and Part ‘1’ segment point 1– RH window • Element 1103 • Spring -0 • Element 1100 • De-select “Conn. To…for node 2 enter ‘1101’

Heinz Pircher und Partner

RM2000/GP2000

Cross Section with variable depth using GP2000

Procedure Guide

9

Cross Section with variable depth using GP2000 f(x) Variable Cross Section depth

Basic – Cross Section HQS

5,0 m

HQS (variable) Value = 4,0 m 3,0 m

3,0 m Segment length

0,0 m

Input the Basic Cross Section

100,0 m

Cross Section

Define the Cross-Section Select ‘Variable’ and create with ‘Insert’ a new Variable (HQS) with the Value ’4,0 m’ and Type ’Length’.

Construktion Line

Create a construction line in dependence on this Variable (HQS). Define all the other construction lines which are necessary to defining a complete cross section.

Element(s)

Define all the elements in the complete cross section.

Create Table

Select Segment

Variables

© TDV – Technische Datenverarbeitung Ges.m.b.H.

70,0 m

Select the ‘Cross sec’ arrow and the insert symbol Accept the default name (cross1)

Insert Table

Connecting Variable and Function

50,0 m

Insert cross 1

Insert Var 1

Define of a Function (Formel, Table)

30,0 m

Select ‘Formula’ and creat with ‘Insert’ a new ’Table’ (Radio Buttons) with the Type ’Length’ and name ’HQS_Tab’. Define a new Table item in the lower Table. Interpolation linear (see userguide), Variable A: Segment length and Variable B: Cross Section depth. Do ’Insert after’ until the required function is defined. With INFO Button the create function can be shown. Select the necessary ‘Segment’. N.B. CS had to assign to the segment! Select ’Variables’ (radio buttons). Click the ’modify’ function in the lower liste and assign the existing Variabel an Expression (function) for example HQS_Tab(sg). (Attention: from point , to point, step) N.B. (sg) assign the function global and (sl) assign the function local (see user guide).

Heinz Pircher und Partner

RM2000/GP2000

Orthogonal Grillage Definition using GP2000

Procedure Guide

10

Orthogonal Grillage Definition using GP2000 Input the axis geometry

Insert Axis 1

Select the ‘Axis’ arrow and the insert symbol

Insert seg1

Select the ‘Segment’ arrow and the insert symbol Accept the default name

Insert cross1

Select the ‘Cross sec’ arrow and the insert symbol Accept the default name

Horizontal axis starting point

Insert axis starting point for Horizontal alignment. Select Po . Accept the default values

Straight Line

Select the straight line symbol & input 140 (metres)

Select Vertical Axis icon

Input the Cross Section geometry

Vertical axis starting point

Insert axis starting point for Vertical alignment: Select Po . Accept the default values

Insert a straight line

Select the straight line symbol & Input 140 (metres) and close the axis definition when finished

Cross Section

Define the Cross-Section

Parallel Construction Line

Define all the construction lines necessary for defining the complete cross section (all the beams)

Element(s)

Define all the elements in the complete cross section (all the beams)

Part(s)

Define as many parts as there are beams in the cross section (3 in this example) by clicking on the intersecting CL’s over the centre of the beams to define the reference point

Modify Part(s)

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Select the element part number in the cross section to modify – the number will change to the number shown in the ‘Part window’ Modify the element numbers to match the relevant ‘Part number’ Heinz Pircher und Partner

RM2000/GP2000

Orthogonal Grillage Definition using GP2000

Procedure Guide

11 Reference Point Group

Select the ‘Ref point’ arrow at the top of the screen and the insert symbol Accept the default name

Define the Connection Points

Click on the intersection point of the CL’s at the bottom of each beam in the position where the bearings are to be placed and select Conection Point

Assign a name to each different point

Name the points ‘Sup1’; ‘Sup2’; & ‘Sup3’

Segment

Insert From 0 To 140 Step 4

Modify

Assign cross sections to all the points

Numbering

Starting at the top of the list: Assign beam numbers and material numbers to the parts

Segment

Support Station

Insert a new Connection Constants

Select next support

Recalc (ESSENTIAL)

Export to RM

© TDV – Technische Datenverarbeitung Ges.m.b.H.

RM

Select the station for the first line of supports (Station 0) Select Spring-0

Insert element 1101, change Connection point to sup1, change Part to ‘Part1’, insert the appropriate spring stiffnesses Repeat for ‘Part2’ – Sup2 El 1102 Repeat for ‘Part3’ – Sup3 El 1103 Select the next support position in the table (Position 11 in this example) Repeat the above procedure for all the support positions N.B. Do not change Alpha 1 to 90 degrees – the program does this automatically! Select RM to export the structural geometry to RM N.B. Only the main beams and the bearings below them have been prepared – the transverse beams defining the grillage must be inserted from RM2000 in the normal way – STRUCTURE-ELEMENT Heinz Pircher und Partner

RM2000/GP2000

Composite Definition using GP2000

Procedure Guide

12 Node Part 3

Composite Definition using GP2000

Node Part 2 Node Part 1

(Supposition: Bridge axis, Segment already defined)

1

PART 1

1

1

PART 3

2 PART 2

Input the Cross Section geometry

Cross Section

Parallel Construction Line

Input all the construction lines necessary for defining the complete cross section (all the beams)

Element(s)

Define all the elements in the complete cross section (all the beams)

Create Parts

Composite

Modify Part(s)

Assign the Element Numbers

Segment

Modify

Numbering

Define Supports

Recalculate

RM

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Insert a new Cross-Section in the Cross-Section list and open it.

Select the ‘Parts’ pull-down-menu arrow and insert 2 additional parts (2+3). The node for the new part must be selected immediately after clicking the insert button. Click on Part3 and then COMPOSITE to define the Composite section: Choose Part 1 and Part 2 and confirm with OK Select the element part number in the cross section for modification – the number will change to the number shown in the ‘Part window’. Element numbers must be the same as their ‘Part numbers’ Insert segment points e.g. from 0 to 140 Step 4

Assign cross sections to all the points Starting at the top of the list: Assign beam element numbers and material numbers to the parts automatically N.B. Elements numbers can be directly defined by selecting the parts radio button and then the edit icon.

Select re-calculate before exporting

Select RM to export the data to RM2000

Heinz Pircher und Partner

RM2000/GP2000

Tendon Definition & Calculation using RM2000

Procedure Guide

13

Tendon Definition & Calculation using RM2000 Define the tendon profiles & assign to elements

Structure

Tendon

Assignment

Define the tendon geometry

Insert all the tendon constants (top) Assign the tendon(s) to the elements in the structure (bottom)

Structure

Tendon

Geometry

Define the prestressing load set & load case

Assign the tendon geometry control point relative to a node or an element number. N.B. For the profile to be viewed, it must either be a “Standard Profile” or have been made defined in GP2000

Construction Schedule Loads

LSet

Insert a new loadset called prestressing

Pre/Post tensioning Tendons

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Define the tendons to be stressed in this load set

Heinz Pircher und Partner

RM2000/GP2000

Tendon Definition & Calculation using RM2000

Procedure Guide

14 Construction Schedule Loads

LCase

Define the stressing actions

Define a prestressing loading case & assign the load set to it

Construction Schedule Stage

Tendon

PREL

Calculating the prestressing

Specify the factor to multiply the max allowable tendon stress (typically 1.05), specify the stress-label (i.e. CS1). Specify the wedge slip in metres - (typically 0.006m)

Construction Schedule Stage

Action

Calculation Action

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Stress

Define the stress label (i.e. CS1)

Calc

Calculate the prestressing loading case

Grout

Select Constants to modify the spring stiffness , element numbers and eccentric connections. Heinz Pircher und Partner

RM2000/GP2000

Creep & Shrinkage Calculation using RM2000

Procedure Guide

15

Creep & Shrinkage Calculation using RM2000 (Supposition: Bridge axis, girder cross section & permanent loading cases already defined)

Import the variables

FILE

Import the creep & shrinkage variables into the RM-Project-Database (e.g. CEB78.rm or CEB90.rm……..)

Import

ASCII -Partial

Variable

Select the additional material definitions

PROPERTIES

Material / Info

PH(t) EPS(t) EMOD(t)

,

Select the Variable checkbox and choose the file containing the creep & shrinkage variables (e.g. CEB78.rm, CEB90.rm……..) from the //TDV2000/Rm8 program directory and confirm with OK. N.B. The variables can also be imported via File\Defaults\variable\mark all\Copy

Select the Info button & then the time dependent functions for creep & shrinkage (see below) Click on the pull-down menu arrow s for the creep coefficient, the shrinkage coefficient & the E-Modulus and select C78sh, C90sh etc……..as appropriate for each. N.B.: Sig-Zy, Conc and Z-Typ must be defined for all model codes except CEB78. Confirm with OK

STRUCTURE

Element

Define Time, Age, Temperature

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Time

Input the Age of the Concrete, the shrinkage time, the Relative Humidity and the Temperature for the elements using the MODIFY BUTTON, confirm with OK and close the window

Heinz Pircher und Partner

RM2000/GP2000

Creep & Shrinkage Calculation using RM2000

Procedure Guide

Loading Case

16

CONSTRUCTION SCHEDULE

Loads

Lcase

Stage

Calculation Action Action

Calculation Action

Creep

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Define a new blank loading case (e.g.: 601 for Creep & Shrinkage in construction stage 1), containing no load set . – (it is not necessary to define a load set for creep & shrinkage)

Select Stage

Select Action

Select Calculation Action

Select CREEP Inp2: Number of Time Steps (e.g:.1) Out1: Loading case Number (e.g.: 601) Out2: List-File Delta-T (Day): length of Creeping Time since last creep calculation

Heinz Pircher und Partner

RM2000/GP2000

Load Manage Definition using RM2000

Procedure Guide

17

Load Manage Definition using RM2000 (Supposition: Structural System, Loadsets & Loadcases already defined) LoadInfo G1

I 100

G2

200

G3 PT C&S

300 500 600

II 1000 1000 1000 1000 1000

Description Selfweight Additional permanent load Additional permanent load Prestressing Creep & Shrinkage

Define the Load Management

“Load Management” is used for the automatic accumulation and superposition processes of certain files during the construction schedule analysis.

Construction Schedule Loads

Lmanage

Load Info

Lcase

Modify

Select insert • Enter a new Load Info name (e.g.:G1; G2; G3). • Enter the loading case numbers for the accumulated loading results e.g. ‘G1’ type loading results should be stored in LC 100 & in LC1000 • Repeat for PT, C&S... N.B. Superposition files can also be chosen for the loading result accumulation. Change to Loading case Select the loading cases to be assigned to the ‘Load Info’ groups and insert the appropriate LoadInfo name (e.g. G1). Repeat for other loading cases

Stage / Action

Initialise

© TDV – Technische Datenverarbeitung Ges.m.b.H.

The loading case numbers assigned for accumulated results in load management must be initialised (in the Construction Schedule) before use: • Initialise all the relevant Loading Case numbers & Envelope using LcInit, Supinit. (e.g.: 100, 500, 600, 1000…) and the Superposition files Heinz Pircher und Partner

RM2000/GP2000

Stage Definition & Calculation using RM2000

Procedure Guide

18

Stage Definition & Calculation using RM2000 (Supposition: Whole Structural System already defined)

Stage 2

Stage 1

Stage 3

Define the Loading Cases

Construction Schedule Loads

LSet

LCase

Define the relevant Loadsets for the construction stages (e.g.: 101 for Selfweight in the first CS, 102 Selfweight second CS etc…..) and the relevant Loading cases (e.g.: 101 for Selfweight in the first CS, 102 Selfweight second CS etc…..)

Stage

Define the Construction Stages Insert

Activation

Action

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Insert all the Construction Stages (3 construction stages needed in this example – stage 1 to 3) N.B. “Construction stages” can be used for things other than actual construction stages – i.e. for a clearer calculation procedure (e.g. traffic calculation in a separate stage etc…..) Activate the relevant elements and springs in each stage (e.g.: in Stage 1 all the elements that are constructed in stage 1 etc.) Add all the actions required in the different stages (e.g.: Calculation action of loading case 101 in Stage 1 etc…..)

Heinz Pircher und Partner

RM2000/GP2000

Fibre Stress Check Calculation

Procedure Guide

19

Fibre Stress Check Calculation 1. GP2000:

(Supposition: Bridge axis & girder cross section already defined)

Specify the Stress Points

Cross-Section

Select the Girder cross section and open it. “Unlock” the cross section if necessary.

Reference Point

Insert a new reference point group to identify the Stress Points (say STRESS)

Point Insert

Specify Stress Points Recalculate

RM

2. RM2000: Call for Fibre Stress calculation in the Construction Schedule

Construction Schedule / Stage

Calculation Action FibChk

Results\PlSys

Recalc

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Choose a point „Insert“ symbol to specify the Stress Points (SPtop & SPbot say) Select the ‘Refrence Point Group’ pull-down menue arrow to change the type to Stress Point. Specify the position of the Stress points in the cross section – at top and bottom respectively Select re-calculate before exporting

Select RM to export the data to RM2000 Select Construction Schedule/Stage Fibre stress results for both combination files and loading cases can be plotted and/or printed to a file. Fibre Stress output listing FibChk prepares an output listing of the fibre stress results and annotates overstressed results. Inp1: Loading case or Combination File Inp2: Factor F1;F2 – User Defined Stress limits (defined as a proportion of the limits defined in Properties\material\I\Fibre Stress check) Out1: -blank Out2: File name for printout Fibre Stress Plot Select Results\PlSys to specify the fibre stress plots: Basic definition Select Results\PlSys\Macro\Load case plot, stresses or Superposition plot, stresses to get a basic Fibre Stress Plot The Plot file prepared by the ‘Macro’ can be easily edited to display additional results – refer “Results” in User Guide. Select Recalc to get output listing – Results can be plotted immediately after the relevant loading case/sup file calculation. Heinz Pircher und Partner

RM2000/GP2000

Nonlinear Temperature Gradient Calculation

Procedure Guide

20

Nonlinear Temperature Gradient Calculation 1. GP2000 INPUT:

(Supposition: Bridge axis & girder cross section already defined) Temperature difference

Temperature difference PLUS

MINUS 0.10

T1

T1 T2

T2 0.45d

°C

0.20

T3

Deckdepth

T3 1.0 or d-0.20

T4 T5

d

T6 0.45d

T4 Node 101

T5

0.20

T7 0.10

0.20

T8

Specify the additional Temperature Points in GP2000

T6

Cross-Section

Additional Lines

Reference Point

Point Insert

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Select the relevant cross section and open it Construction lines must be inserted in the cross section at each of the temperature change points – T1 to T8 here (some variables depth construction lines are required here ) Insert two new reference point groups with the name TEMP-MINUS and TEMP-PLUS

Select the appropriate construction line intersection point to define the temperature points (T1-T6) in the cross-section, name the points appropriately and enter the specified temperature difference. N.B. The temperature points must be defined in consecutive order and must not be defined in a random order or the program will misinterpret the data.

Heinz Pircher und Partner

RM2000/GP2000

Nonlinear Temperature Gradient Calculation

Procedure Guide

21

Create Table

Recalculate/RM

If the deck has a variable depth, it is necessary to create an additional table defining the location of the temperature points that vary with the deck depth . - ref User Guide The revised GP2000 data must be “Recalculated and the exported to RM2000 before completing the temperature input in RM2000.

2. RM2000 INPUT: Specify the additional Input in RM2000

Construction Schedule

Change to the RM2000 Construction Schedule

Create LoadsLoad set

Prepare a blank Load set, note the set number and describe it as T-MAX

Create Load case

Define a Loading case containing the T-MAX load set

Stage - Action

Temp-Var

Insert a calculation action “TempVar”: Inp1: Group-name (TEMP-MAX, named in GEOP2000) Out1: Load-set number defined above for T-MAX

Calc

Insert a calculation action “CALC”: Inp1: Loading case number defined for T-MAX

Repeat

Repeat the above procedure for T-MIN. The program prepares and stores the full load-set input data for T-MAX and TMIN from the above data

Recalc

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Part 2

Heinz Pircher und Partner

RM2000/GP2000

Defining a Live Load using RM2000

Procedure Guide

22

Defining a Live Load using RM2000 Input the Lanes

Construction Schedule

Enter a lane number

Loads

LANE

Input the elements and the lane eccentricity i.e. input Lane 1 and Lane 2 with eccentricity (e=+/-1.5m) using MACRO2 Lane 1 1 2

Input the Load Train

Macro 2 2

e -1.5 +1.5

Construction Schedule Loads

LTRAIN

Calculate Loading

Define the loading simulating the load train . (Refer User guide) i.e. input the load train 1

Construction Schedule Stage

Envelope action

Supinit

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Initialise all the superposition files that will be used. i.e. live.sup, livele.sup, liveri.sup

Heinz Pircher und Partner

RM2000/GP2000

Defining a Live Load using RM2000

Procedure Guide

23 Calculation Action infl

Calculation Action LiveL

Envelope Action

i.e. Define the influence lines for lanes 1 and 2 Inp1

Inp2

Out1

Out2

1 1

LIQV LIF

Define loading input files & output files for the lane results: i.e.: LiveL LiveL

Inp1

Inp2

Out1

1 2

1 1

livele.sup Livere.sup

Out2

Combine the lanes with the appropriate combination code (supadd, supand, supor)

SupAnd

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Heinz Pircher und Partner

RM2000/GP2000

Using ‘ADDCON’ (KASP) with a simple example

Procedure Guide

24

Using ‘ADDCON’ (KASP) with a simple example (Supposition: Whole Structural System already defined) L.C. 1 UDL=15kN/m Node 11 Node 1

20 m

20 m

Node 21

Element 1200

Unit settlement = 0.001m

Define the Loading Cases for the Constraint Criteria

Construction Schedule Loads

LSet

LCase

Define the Constraint Criteria Loads

Elements

Insert the loading cases applicable to the Constraint criteria. (Bottom Table) Loading case 1 as FIXED – LCFIX with the factor as 1.0 Loading Case 2 as VARIABLE – LCVAR with the factor as ‘VAR’ Insert the Constraint Criteria under ‘Elements’ (Mz = –500kNm at node 11): Element 10 ‘End’ DOF Mz Val-max = val-min = -500

Stage

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Define the two load sets and the two loading cases (e.g.: L.C. 1 is a UDL of 10kN/m from Elem 1 to Elem 20 and L.C. 2 is a Settlement of 0.001m at the beginning of element 1200.)

Choose AddCon and insert the ‘Additional Constraint’ (Top table)

AddCon

Start the Iterative Calculation

The Structure: A 2 X 20 metre span continuous beam with a uniform loading of 15kN/m. The Problem: Find the amount of settlement required at Element 1200 such that the moments at node 11 due to the sum of L.C. 1 (15kN/m) plus this settlement loading case is exactly 500kNm. The Solution: Apply a ‘Unit Settlement Loading of 0.001m (L.C. 2)’ and use KASP to factor this unit settlement such that in combination with L.C.1 the required result is achieved.

Select stage to define the iterative calculation Action

Select ‘Action’

Re-start

Insert ‘Re-start’ in the Action column of the Construction Schedule Heinz Pircher und Partner

RM2000/GP2000 Using ‘ADDCON’ with a simple Cable Stay bridge example Procedure Guide

25

Using ‘ADDCON’ with a simple Cable Stay bridge example (Supposition: Whole Structural System already defined)

The Structure:

A 2 X 20 metre span continuous beam. Top of pylon 10 m above girder. L.C. 1 UDL=105kN/m

31

Cable El 2001

Cable El 2004

Cable El 2002

Cable El 2003

Node 1 5

Spring El 100

Node 21

11 8

14

17

Spring El 300

20 m

20 m

Element 1200 Spring El 200

Define the Loading Cases for the Constraint Criteria

Construction Schedule Loads

The Loading • Uniform loading on the girder including self weight of 105kN/m. • Unit Cable Stressing to 1000kN • Unit Settlement at top of elements 100 and 300 of 0.1m The Problem: Find the appropriate cable stressing forces and support movements to ensure that the girder moments at the cable supports and the pylon from the combination of these loading cases with the uniform loading on the girder (L.C. 1) is exactly -500kNm. A Solution: • Stress cables 2002 and 2003 in one loading case • Apply other ‘Unit Loading Cases ( stressing cables 2001 & 2004 and settlement at 100 and 300) as separate loading cases. • Use KASP to factor the unit loading cases such that in combination with the uniform loading, the required result is achieved (-500 kNm in the 5 places) 5 Unit Loading Cases 5 constraints ( moments at 5 places)

LSet

LCase

Choose AddCon and insert the ‘Additional Constraint’ (Top table)

AddCon

Define the Constraint Criteria

To Stage © TDV – Technische Datenverarbeitung Ges.m.b.H.

Define the six load sets and the six loading cases: L.C. 1 UDL of 105kN/m Element 1 to 20 L.C. 2 Stress Cable 2002 and 2003 to 1000kN L.C. 3 Stress Cable 2001 to 1000kN L.C. 4 Stress Cable 2004 to 1000kN L.C. 5 Apply 0.1m settlement at Element 100 end. L.C. 6 Apply 0.1m settlement at Element 300 end.

Loads To Elements

Insert the loading cases applicable to the Constraint criteria. (Bottom Table) Loading case 1 as FIXED – LCFIX with the factor as 1.0 Loading Cases 2 - 6 as VARIABLE – LCVAR with the factor as ‘VAR’ Heinz Pircher und Partner

RM2000/GP2000 Using ‘ADDCON’ with a simple Cable Stay bridge example Procedure Guide

26

Elements

Insert the Constraint Criteria under ‘Elements’ (Mz = –500kNm): Elements 5 to 17 in steps of 3 at element begin DOF Mz Val-max = val-min = -500

Start the Iterative Calculation

Stage

Select stage to define the iterative calculation Action

Select ‘Action’

Re-start

Insert ‘Re-start’ in the Action column of the Construction Schedule using: • •

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Constraint No: 1 Tolerance 1e-5

Heinz Pircher und Partner

RM2000/GP2000

Response Spectrum Calculation using RM2000

Procedure Guide

27

Response Spectrum Calculation using RM2000 (Supposition: Structural System already defined) Specify the Response Spectrum

Properties

Variable

Construction Schedule

Specify the Loading andMasses

Loads

LSet

LCase

SEISMIC (upper window )

SEISMIC (lower window)

Stage / Action

Specify the Additional Actions

Caclculation Action Eigen

Envelope Action Supin Calculation Action RespS Recalc © TDV – Technische Datenverarbeitung Ges.m.b.H.

Insert the Response Spectrum using both ‘Formula and Table’ to define the values. N.B. The program expects OMEGA for the abscissa (horizontal ordinate) and must be told – via ‘Formula’ what is given in terms of OMEGA. The type of vertical ordinate is defined in the Construction Schedule/Loads/Seismic

Specify the Earthquake masses and the mass of the structural System (e.g.: Selfweight…) and sum it up to one loading case (e.g.:LC100)

Enter the seismic loading input: Number of seismic LC (e.g.: 1) Modal-File: (e.g.: eig1001.mod) Rule: (ABS, SRSS, DSC, or CQC) Duration: Seconds (e.g.: 10) Specify the Response Spectrurm: Type of Resp.Spec. graph: d,v or a Load vector components definining the direction of the displacement, velocity or acceleration (e.g.: Vec-Vx = 1) Damping Factor: loagarithmic decrement (e.g.: 0.05 = 5%) Insert the Calculation Action EIGEN: Inp1: Number of natural modes Inp2: Reference LC (e.g.: LC100) Out1: (e.g.: eig1001.mod) Out2: (e.g.: eigen.lst) Initialize all new *.sup files: Out1: (e.g.: seismic-x.sup) Insert the Calculation Action RESPS: Inp1: Number of Seismic Load (e.g.:1) Out1: (e.g.: seismic-x.sup)

Heinz Pircher und Partner

RM2000/GP2000

Ultimate Moment Check

Procedure Guide

28

Ultimate Moment Check 1. GP2000 INPUT:

(Supposition: Bridge axis & girder cross section already defined)

Specify the additional reinforcement

Cross-Section

Reference Point

Point Insert

Specify Reinforcement Recalculate

RM

Select the relevant cross section and open it. “Unlock” the cross section if necessary. Insert new reference point group(s) to identify the additional reinforcement i.e REINFtop & REINFbot etc Choose a point „Insert“ symbol to specify the reinforcement positions Specify position of additional reinforcement in cross section (top, bottom, left, right) – reinforcement area is allocated in RM2000 Select re-calculate before exporting

Select RM to export the data to RM2000

2. RM2000: Specify the material Stress/Strain curves

Properties Material Prestr.steel

Info

© TDV – Technische Datenverarbeitung Ges.m.b.H.

Select Prestressing Steel

Select Info

Ultimate load check

Select the ultimate load check pulldown menu arrow

EPS1-8

Select the EPS1-8 pull-down menu arrow

EPS1-8 SIG1-8

Input the Stress/Strain values for the material N.B. εn-1