Credit Correlation Modelling - Jean-Paul LAURENT .fr

May 24, 2005 - Some insights about current issues in CDO modelling. ▫ Gaussian copula. ▫ One factor Gaussian copula. ▫ Ordering of risks. ▫ Correlation ...
188KB taille 2 téléchargements 409 vues
Comparative analysis of CDO pricing models

Credit Correlation Modelling Comparative analysis of CDO pricing models

„

Purpose of the presentation „

Global Derivatives 2005

„

24 May 2005

Some insights about current issues in CDO modelling Gaussian copula „ „

Jean-Paul Laurent Professor, ISFA Actuarial School, University of Lyon Scientific consultant, BNP-Paribas

„

„

[email protected], http://laurent.jeanpaul.free.fr

Model dependence/Choice of copula „ „

Joint work with X. Burtschell and J. Gregory (BNP-Paribas)

„

„

A comparative analysis of CDO pricing models available on www.defaultrisk.com

„

One factor Gaussian copula Ordering of risks Correlation sensitivities and Gaussian extensions Student t, double t, Clayton, Marshall-Olkin, Stochastic correlation Calibration issues Distribution of conditional default probabilities

Matching the correlation skew Further issues

1

2

Comparative analysis of CDO pricing models „

Agenda „ „

„

„

Semi explicit pricing, conditional default probabilities „

Factor approaches to joint default times distributions:

Conditional default probabilities and pricing of CDOs One factor Gaussian copula „

Dependence to the correlation parameter

„

Gaussian extensions, correlation sensitivities

„

V: low dimensional factor

„

Conditionally on V, default times are independent.

„

Conditional default and survival probabilities:

Model dependence/Choice of copula „

Student t, double t, Clayton, Marshall-Olkin, Stochastic correlation

„

Calibration

„

Empirical results

„

Why factor models ?

„

Need tractable dependence between defaults:

„

„

Matching the correlation skew

„

Tackle with large dimensions (125 names in I-TRAXX) Parsimonious modelling Semi-explicit computations for CDO tranches

3

4

Semi explicit pricing, conditional default probabilities „

Semi explicit pricing, conditional default probabilities

Semi-explicit pricing for CDO tranches „

„

Characteristic function:

Laurent & Gregory [2003] „

„

Default payments are based on the accumulated losses on the pool of credits:

By conditioning upon V and using conditional independence:

n

L(t ) = ∑ LGDi 1{τ i ≤t} , LGDi = N i (1 − δ i ) i =1

„

Tranche premiums only involves call options on the accumulated losses

„

Distribution of L(t) can be obtained by FFT „

+ E ⎡( L(t ) − K ) ⎤ ⎣ ⎦

Or other inversion technique iV

„ 5

Only need of conditional (on factor) probabilities pt 6

1

One factor Gaussian copula

Semi explicit pricing, conditional default probabilities „

One factor Gaussian copula: „

independent Gaussian,

„

„

Default times:

„

Fi marginal distribution function of default times

„

Conditional default probabilities:

mezzanine

senior

0%

5341

560

0.03

With respect to correlation Gaussian copula

„

„

equity

CDO margins (bps pa)

„

Attachment points: 3%, 10%

10%

3779

632

4.6

„

100 names

30%

2298

612

20

„

Unit nominal Credit spreads 100 bp

50%

1491

539

36

„ „

5 years maturity

70%

937

443

52

100%

167

167

91

7

8

One factor Gaussian copula „

One factor Gaussian copula

Equity tranche premiums are decreasing wrt ρ „ „

n

∀x ∈

→ n

, ∀ε , δ > 0

Let X and Y be Gaussian vectors with zero mean

⎛ 1 σ 12X ⎜ X ⎜ σ 21 1 ⎜ X Σ =⎜ ⎜ ⎜ ⎜⎜ ⎝

∆i f ( x ) = f ( x + ε ei ) − f ( x ) ε

∆εi ∆δj f ( x ) ≥ 0

Supermodular order (increase in dependence) X = ( X 1 ,… , X n )

« Supermodular » order of Gaussian vectors „

General result ? Supermodular function f is such that:

f :

„

„

Y = (Y1 ,…, Yn )

„

σ Yji

1

Müller & Scarsini (2000), Müller (2001)

10

One factor Gaussian copula

« Stop-Loss » order

„

Accumulated losses: L(t ), L '(t )

L(t ) ≤sl L '(t ) ⇔ E ⎡( L(t ) − K ) ⎤ ≤ E ⎡( L '(t ) − K ) ⎤ , ∀K ≥ 0 ⎣ ⎦ ⎣ ⎦ +

1

1

Σ X ≤ ΣY ⇔ X ≤sm Y

One factor Gaussian copula

def

σ jiX

σ ijY

1

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 1 ⎟⎠

def

9

„

1

⎛ 1 σ 12Y ⎜ Y ⎜ σ 21 1 ⎜ Y Σ =⎜ ⎜ ⎜ ⎜⎜ ⎝

Σ X ≤ ΣY ⇔ σ ijX ≤ σ ijY , ∀i, j

X ≤ sm Y ⇔ E ⎡⎣ f ( X ) ⎤⎦ ≤ E ⎡⎣ f (Y ) ⎤⎦ , ∀f supermodular

„

σ ijX

1

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ 1 ⎟⎠

+

„

Supermodular order of latent variables implies stop-loss order of accumulated losses

„

Thus,equity tranche premium is always decreasing with correlation

„

Guarantees uniqueness of « base correlation »

„

Monotonicity properties extend to Student t, Clayton (Wei & Hu [2002]) and Marshall-Olkin copulas 11

Second issue „

Equity tranche premium decrease with correlation

„

Does ρ = 100% correspond to some lower bound?

„

ρ = 100% corresponds to « comonotonic » default dates:

(τ1 ,…,τ n ) comonotonic

„

„

where U is uniform

„

Tchen (1980)

⇔ (τ 1 ,…,τ n ) = ( F1−1 (U ),…, Fn−1 (U ) ) d

(τ 1,…,τ n ) ≤sm ( F1−1 (U ),…, Fn−1 (U ) )

ρ = 100% is a model free lower bound for the equity tranche premium 12

2

One factor Gaussian copula „

One factor Gaussian copula

Third issue „

„

„ „

„

Does ρ = 0% corresponds to the higher bound on the equity tranche premium? ρ = 0% corresponds to the independence case between default dates The answer is no, negative dependence can occur Base correlation does not always exists „

„

„

Even in Gaussian copula models

Factor models are usually associated with positive dependence

„

„

Gaussian extensions

„

i.e. independent default dates are smaller with respect to supermodular order

Pairwise correlation sensitivities

Intra and intersector correlations In the core of correlation, Gregory & Laurent, Risk october 2004

ρ12

⎛ 1 ⎜ ⎜ ρ 21 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ 1 ⎜ ⎜ β1 ⎜β ⎜ 1 ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

⎞ ⎟ ⎟ ⎟ ρij + δ ⎟ ⎟ ⎟ . ⎟ 1 ⎟ 1 .⎟ ⎟ . 1⎟⎠

1 1 .

ρij + δ

β1 1

β1 β1

β1

1

γ 1 . . 1

γ

1

βm

βm βm

βm

1

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ βm ⎟ ⎟ βm ⎟ ⎟ 1 ⎠

13

14

Model dependence / choice of copula „

Model dependence / choice of copula

Stochastic corrrelation copula „ „

„

independent Gaussian variables Bi = 1 correlation ρ , Bi = 0 correlation β

)

(

(

Vi = Bi ρV + 1 − ρ 2 Vi + (1 − Bi ) β V + 1 − β 2 Vi

Student t copula „

Embrechts, Lindskog & McNeil, Greenberg et al, Mashal et al, O’Kane & Schloegl, Gilkes & Jobst

⎧ X = ρV + 1 − ρ 2 V i ⎪⎪ i ⎨ Vi = W × X i ⎪ τ = F −1 ( t (V ) ) i i ν ⎪⎩ i

)

Vi = ( Bi ρ + (1 − Bi ) β ) V + 1 − ( Bi ρ + (1 − Bi ) β ) Vi 2

τ i = Fi pti|V

−1

„

(Φ(Vi ))

„ „

⎛ − ρV + Φ −1 ( Fi (t ) ) ⎞ ⎛ − β V + Φ −1 ( Fi (t ) ) ⎞ ⎟ + (1 − p )Φ ⎜ ⎟ = pΦ ⎜ 2 ⎜ ⎟ ⎜ ⎟ − 1 ρ 1− β 2 ⎝ ⎠ ⎝ ⎠

V , Vi independent Gaussian variables 2 ν follows a χν distribution W

Conditional default probabilities (two factor model)

⎛ − ρV + W −1/ 2 tν−1 ( Fi (t ) ) ⎞ ⎟ pti|V ,W = Φ ⎜ ⎜ ⎟ 1− ρ2 ⎝ ⎠

15

Model dependence / choice of copula „

Model dependence / choice of copula

Clayton copula „

„

Double t model (Hull & White) ⎛ν − 2 ⎞ Vi = ρi ⎜ ⎟ ⎝ ν ⎠

1/ 2

Schönbucher & Schubert, Rogge & Schönbucher, Friend & Rogge, Madan et al

⎛ ln U i ⎞ Vi = ψ ⎜ − ⎟ ⎝ V ⎠ „

τ i = Fi

−1

(Vi ) ψ ( s) = (1 + s )

−1/ θ „

„

V: Gamma distribution with parameter θ

„

U1,…, Un independent uniform variables

„

Conditional default probabilities (one factor model) iV

(

)

⎛ν − 2 ⎞ V + 1 − ρi2 ⎜ ⎟ ⎝ ν ⎠

1/ 2

Vi

V , Vi are independent Student t variables „

Marshall-Olkin construction of archimedean copulas

pt = exp V (1 − Fi (t ) −θ )

16

with ν and ν degrees of freedom

τ i = Fi −1 ( H i (Vi ) ) „

where Hi is the distribution function of Vi pti|V

17

1/ 2 ⎛ ⎛ν − 2 ⎞ −1 ⎜ 1/ 2 H i ( Fi (t ) ) − ρ i ⎜ ⎟ V ν ν ⎛ ⎞ ⎝ ⎠ = tν ⎜ ⎜ ⎜ ⎝ ν − 2 ⎟⎠ 1 − ρ i2 ⎜⎜ ⎝

⎞ ⎟ ⎟ ⎟ ⎟⎟ ⎠

18

3

Model dependence / choice of copula „

Shock models (multivariate exponential copulas) „

„

„

Duffie & Singleton, Giesecke, Elouerkhaoui, Lindskog & McNeil, Wong

Modelling of default dates: Vi = min (V ,Vi ) „ „

V ,Vi exponential with parameters α ,1 − α

(

Default dates τ i = Si−1 exp− min (V ,Vi ) „

„

„

Model dependence / choice of copula

)

„

Well suited for homogeneous portfolios

„

Dependence is « monotonic » in the parameter

Calibration procedure

Conditionally on V ,τ i are independent.

Conditional default probabilities

„

senior

0%

5341

560

0.03

3779

632

4.6

„

2298

612

20

With respect to correlation

„

„

100 names

30%

„

Unit nominal

„

Credit spreads 100 bp

„

5 years maturity

50%

Given the previous parameters

equity

mezzanine

senior

0%

5341

560

0.03

Attachment points: 3%, 10%

10%

3779

632

4.6

„

100 names

30%

2298

612

20

„

Unit nominal Credit spreads 100 bp

50%

1491

539

36

„ „

5 years maturity

70%

937

443

52

100%

167

167

91

CDO margins (bps pa) „

Attachment points: 3%, 10%

Or given market quotes on equity trances

Reprice mezzanine and senior CDO tranches

Model dependence / choice of copula

mezzanine

„

Computed under one factor Gaussian model

„

20

equity

10%

„

„

CDO margins (bps pa) Gaussian copula

Fit Clayton, Student t, double t, Marshall Olkin parameters onto CDO equity tranches

19

Model dependence / choice of copula

„

One parameter copulas

„

„

iV

„

„

Si marginal survival function

qt = 1V >− ln Si ( t ) Si (t )1−α

„

Calibration issues

1491

539

„

36

70%

937

443

52

100%

167

167

91

With respect to correlation Gaussian copula

21

Model dependence / choice of copula ρ θ ρ62 ρ122

ρ ρ ρ ρ ρ

0% 0

10% 0.05

30% 0.18 14%

50% 0.36 39%

70% 0.66 63%

100% ∞ 100%

22%

45%

67%

100%

22

Model dependence / choice of copula ρ 0% 10% 30% 50% 70% Gaussian 560 633 612 539 443 Clayton 560 637 628 560 464 Student (6) 637 550 447 Student (12) 621 543 445 t(4)-t(4) 560 527 435 369 313 t(5)-t(4) 560 545 454 385 323 t(4)-t(5) 560 538 451 385 326 t(3)-t(4) 560 495 397 339 316 t(4)-t(3) 560 508 406 342 291 MO 560 284 144 125 134 Table 6: mezzanine tranche (bps pa)

0% 12% 34% 55% 73% 100% 0% 13% 36% 56% 74% 100% 0% 12% 34% 54% 73% 100% 0% 10% 32% 53% 75% 100% 0% 11% 33% 54% 73% 100% α 0 28% 53% 69% 80% 100% Table 5: correspondence between parameters

t(4)-t(4) t(5)-t(4) t(4)-t(5) t(3)-t(4) t(4)-t(3)

23

100% 167 167 167 167 167 167 167 167 167 167

24

4

Model dependence / choice of copula ρ Gaussian Clayton Student (6) Student (12) t(4)-t(4) t(5)-t(4) t(4)-t(5) t(3)-t(4) t(4)-t(3) MO

0% 0.03 0.03

10% 4.6 4.0

30% 50% 70% 20 36 52 18 33 50 17 34 51 19 35 52 0.03 11 30 45 60 0.03 10 29 45 59 0.03 10 29 44 59 0.03 12 32 47 71 0.03 12 32 47 61 0.03 25 49 62 73 Table 7: senior tranche (bps pa)

Model dependence / choice of copula ρ 0% 10% 30% 50% 70% 100% Gaussian 0% 0% 0% 0% 0% 100% Clayton 0% 0% 2% 15% 35% 100% Student (6) 5% 12% 25% 100% Student (12) 1% 4% 13% 100% t(4)-t(4) 0% 0% 1% 10% 48% 100% t(5)-t(4) 0% 0% 0% 0% 0% 100% t(4)-t(5) 0% 100% 100% 100% 100% 100% t(3)-t(4) 0% 100% 100% 100% 100% 100% t(4)-t(3) 0% 0% 0% 0% 0% 100% MO 0% 28% 53% 69% 80% 100% Table 8: coefficient of lower tail dependence (%)

100% 91 91 91 91 91 91 91 91 91 91

Gaussian, Clayton and Student t CDO premiums are close

Tail dependence is poorly related to CDO tranche premiums

25

26

Model dependence / choice of copula

Model dependence / choice of copula ρ Gaussian Clayton Student (6) Student (12) MO

0% 0% 0%

10% 1% 3%

30% 6% 8% 9% 14% 0% 16% 36% Table 9: Kendall’s

50% 16% 15% 25% 30% 53% τ (%)

70% 33% 25% 44% 47% 67%

ρ2

100% 100% 100% 100% 100% 100%

0%

10%

30%

50%

70%

100%

Gaussian 0.66% 0.91% 1.54% 2.41% 3.59% 8.1% Clayton 0.66% 0.88% 1.45% 2.24% 3.31% 8.1% Student (6) 1.41% 2.31% 3.52% 8.1% Student (12) 1.49% 2.36% 3.56% 8.1% t(4)-t(4) 0.66% 1.22% 2.38% 3.49% 4.67% 8.1% t(5)-t(4) 0.66% 1.16% 2.27% 3.38% 4.57% 8.1% t(4)-t(5) 0.66% 1.18% 2.28% 3.37% 4.54% 8.1% t(3)-t(4) 0.66% 1.34% 2.57% 3.69% 5.02% 8.1% t(4)-t(3) 0.66% 1.31% 2.55% 3.70% 4.87% 8.1% MO 0.66% 2.63% 4.53% 5.65% 6.53% 8.1% Table 13: bivariate default probabilities (5 year time horizon)

Kendall’s tau is poorly related to CDO tranche premiums

Bivariate default probabilities are well related to tranche premiums 27

28

Model dependence / choice of copula „

Distribution of conditional default probabilities

Why Clayton and Gaussian copulas provide same SL premiums? „

Loss distributions only depend on the distribution of conditional default probabilities iV t

p „

(

= exp V (1 − Fi (t )

−θ

))

iV t

p

⎛ − ρV + Φ −1 ( Fi (t ) ) ⎞ = Φ⎜ ⎟ ⎜ ⎟ 1− ρ 2 ⎝ ⎠

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5 1

0,9

0,9

0,85 0,8

0,8

0,75 0,7

0,7

0,65

Distribution functions of conditional default probabilities 1

0 1 0,95

0,6

0,6

0,55

0,5 1

0,5

0,95 0,9

0,9

0,45

0,85 0,8

0,5

0,4

0,8

0,4

Clayton Gaussian MO independence comonotonic stoch.

0,75 0,7

0,35

0,7

0,65 0,6

0,6

0,55 0,5

0,5

0,45 0,4

0,4

0,3 Clayton Gaussian MO independence comonotonic stoch.

0,2

0,2

0,15

0,35 0,3

0,3

0,25

0,3

0,1

0,2

0,05

0,1

0,25 0,2 0,15 0,1

0,1 0,05 0 0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 0,50

29

0 0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0 0,50

30

5

Matching the correlation skew Tranches Market [0-3%] 916 [3-6%] 101 [6-9%] 33 [9-12%] 16 [12-22%] 9

Matching the correlation skew

Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 916 916 916 916 916 916 163 163 164 82 122 14 48 47 47 34 53 11 17 16 15 22 29 11 3 2 2 13 8 11

implied compound correlation 40% 35% 30%

M ar ket

Table 17: CDO tranche premiums iTraxx (bps pa)

Gaussi an

25%

doubl e t 4/ 4 20%

Tranches Market [0-3%] 916 [0-6%] 466 [0-9%] 311 [0-12%] 233 [0-22%] 128

Gaussian Clayton Student (12) t(4)-t(4) Stoch. MO 916 916 916 916 916 916 503 504 504 456 479 418 339 339 340 305 327 272 253 253 254 230 248 203 135 135 135 128 135 113

cl ayton exponenti al

15%

t-Student 12 10%

Stoch.

5% 0% 0-3

Table 18: “equity tranche” CDO tranche premiums iTraxx (bps pa) 31

3-6

6-9

9-12

12-22

32

Conclusion „

Matching the skew with second generation models „ „

„

„

Pricing bespoke portfolios, CDO squared with a consistent model Not yet fully satisfactory „ „ „ „

„

RFL, stochastic correlation, double t Conditional default probability distributions are the drivers

Matching 5Y/10Y with same set of parameters Stability of parameters through time Dynamics of the correlation skew / risk management Calibration of multiple parameters, possibly name dependent

Still more work on the quant agenda. 33

6