Diapositive 1 - Simon Ayrinhac

Feb 27, 2015 - Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature ».
4MB taille 3 téléchargements 323 vues
Picosecond acoustics for studying matter at extreme conditions Simon AYRINHAC, Michel GAUTHIER, Frédéric DECREMPS Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (Paris)

Son et lumière : from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

1

This talk is based on the review article published in Ultrasonics 56 (2015) « Picosecond acoustics method for measuring the thermodynamical properties of solids and liquids at high pressure and high temperature » F. Decremps, M. Gauthier, S. Ayrinhac, L. Bove, L. Belliard, B. Perrin, M. Morand, G. Le Marchand, F. Bergame, J. Philippe Ultrasonics 56 129–140 (2015)

2

Acknowledgements

Daniele Antonangeli Livia Bove Robert Pick

Laurent Belliard Bernard Perrin

Marc Morand Gilles Le Marchand Frédéric Bergame Julien Philippe

Livia Bove

Son et lumière : from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

3

Outline 1. Why studying matter at extreme conditions ? 2. Combining diamond anvil cell with ps acoustics 3. Some achievements

Son et lumière : from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

4

Pressure scale

Diamond synthesis

Abyssal depths

Industrial application

Atmosphere

10-4

10-3

10-2

0.1

1

Jupiter's interior Earth core

10

102

103

104

P (GPa)

Condensed matter under extreme conditions High pressures conditions are widely spread in universe Matter exists mainly at extreme conditions 5

Why increase P is interesting ?

- decreases the interatomic distances - explores the repulsive term of the interatomic potential - increases electronic orbitals overlapping - changes structure stability  new phases • rich polymorphism of water • polyamorphism  new properties • metal-isolant transition • supra enhanced  new materials • superhard materials

- reach high P is essential in the study of the earth - planetary interiors are currently accessible only in laboratories 6

Physics of H-bonding Negative melting line : ice floats over water → open structure due to the hydrogen bonding

You are here

Why this rich polymorphism ? → the H bonding remains under HP and it is responsible of the structure distorsions

7

Polyamorphism Polyamorphism is the existence of different amorphous phases • amorphous-amorphous transitions - water : HDA LDA O.Mishima et al, Nature 314 76 (1985)

• liquid-liquid transitions - elemental phosphorus - yttria alumina liquid (Y2O3-Al2O3) - in liquid Ga ?

Y.Katayama et al, Nature 403 170 (2000) S.Aasland and P.F.McMillan, Nature 369 633 (1994)

8

Synthesis of superhard materials from graphit to diamond (8 GPa and 2000 K)

Vickers hardness (in GPa) :

sapphire

Industrial diamond

BC5

Natural diamond

25

70

78

96

T. Irifune et al, Nature 421, 599 (2003)

P=20 GPa, T=2400 °C

hardness : 130 GPa (hardness of diamond single crystal : 60-120 GPa ) 9

Superconductivity Tc increases with the application of high P • Ca @ 216 GPa, Tc=29 K

M.Sakata et al, PRB 83, 220512(R) (2011)

http://www.spring8.or.jp/en/news_publications/press_releas e/2011/110705/

10

Electronic properties of « simple metals » Simple metals : alkali metals, only one valence electron - Na and Li are liquids at very high P

http://www.esrf.eu/UsersAndScience/Pub lications/Highlights/2011/dynamics/dyn2

11

Electronic properties of « simple metals » Simple metals : alkali metals, only one valence electron - Na and Li are liquids at very high P

- Na : complex phase diagram at high P Sodium

http://www.esrf.eu/news/spotlight/spotlight69

http://www.esrf.eu/UsersAndScience/Pub lications/Highlights/2011/dynamics/dyn2

12

Electronic properties of « simple metals » Simple metals : alkali metals, only one valence electron - Na and Li are liquids at very high P

- Na : complex phase diagram at high P Sodium

http://www.esrf.eu/news/spotlight/spotlight69

- Na : transparent at 150 Mbar and 300K

http://www.esrf.eu/UsersAndScience/Pub lications/Highlights/2011/dynamics/dyn2 http://www.sciencedaily.com/releases/2009/03/090312180838.htm

13

Geophysics : preliminary earth reference model (PREM) Dziewonski and Anderson (1981) Physics of the Earth and Planetary interiors, 25, 297.

• inform us about the physical properties of the different layers • Wave velocities depend on pressure and temperature but also on the crystal structure and chemical composition of the constitutive minerals

→ Indoor seismology (laboratory measurements) is needed.

14

Density of pure-Fe vs PREM

Density jump at ICB

 ~10% density difference for the liquid outer core  ~6% density difference for the solid inner core

Light elements in the core (Si, S, O, C …), but how much ?

15

Planetology and exoplanets Understand the structure, composition and formation of planets

Super-earths

16

Diamonds in the sky ? M.Ross, Nature 292, 435 (1981) L.R.Benedetti et al, Science (1999) J.H.Eggert et al, Nature Physics 6, 40 (2010)

Diamond formation in giant planet interiors ?

17

Outline 1. Why studying matter at extreme conditions ? 2. Combining diamond anvil cell with ps acoustics 3. Some achievements

Son et lumière: from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

18

High pressure techniques

Piston-cylinder, Tmax ~2000 K

Paris-Edinburgh press, Tmax~2000 K

Diamond anvil cell, Tmax~4000 K

19

The diamond anvil cell (DAC) He

Weir et al, J. Res. Natl. Bur. Stand. 63A 55 (1959) Jamieson et al, RSI 30 1016 (1959)

membrane filled with He

J.-C.Chervin et al, RSI 66 2595 (1995)

Pressure transmitting medium PTM (hydrostaticity)

advantages of diamond : • very hard • transparent

Hole drilled In the gasket

20

Ruby as a P calibrant

ruby luminescence : P as a function of Raman line shift

 m ruby spheres Al2O3:Cr3+

 R1 ( P) 5  P(GPa)  380.8  1  1 694 . 2    Mao, Xu & Bell, Journal of Geophysical Research: Solid Earth 91 4673 (1986)

Chervin et al, High.Press.Res. 21 305 (2001)

disadvantages : • limited at high T due to the strong increase of linewidth R1 ( P, T )  R1 ( P)  R1 (T ) • the ruby shift is P and T dependent 21

Measuring P and T in-situ Datchi et al, JAP 81 3333 (1997) Datchi et al, High Press. Res. 27 447 (2007)

Two pressure calibrants are used

S.V.Raju et al, JAP 110 23521 (2011)

 T is measured • by ruby (at low T) • by an external power calibration (at high T)

22

Physical acoustics Acoustics  elasticity

 ij  cijklkl

kl  sklmn mn

 Elastic constants are directly related to the free energy derivative

cijkl

 2G  ij  kl

 Rich information, with high sensitivity to the variations of the interaction potential  Equation of state without modelisation

 

1 V  siihh V p

1 l l    sijhhli l j l p

 Knowledge of the equilibrium state (instabilities : Born criterium)

G  0

c  0 23

Elasticity and visco-elasticity at HP and HT : State of the art and objectives Classical ultrasonic (piezo MHz) in Multi Anvil • Need large volume sample (mm) • P max ≈ 20 GPa

Ultrasonic interferometry (piezo GHz) in DAC • No signal as soon as non-hydrostatic pressure induces cracks • P max ≈ 15 GPa

Brillouin scattering in DAC • Sample need to be transparent • P max ≈ 100 GPa

Inelastic X-ray scattering in DAC • Need to apply for beam time • P max ≈ 150 GPa 24

picosecond acoustics combined with DAC C.Thomsen et al, PRB 34 4129 (1986) B.Perrin et al, Physica B 263 571 (1999) Y.Sugawara et al, Phys. Rev. Lett. 88, 185504 (2002)

Ti:sapphire laser

100fs, 80 MHz, Tlaser = 12.55 ns

/2

PBS1

A.O.M.

pump

delay line (1m×4=13.5 ns)

probe

pol.

A

/2 pol. /2

sample PBS2

B PBS3 /4

/4

/4

/4

surface imaging Michelson interferometer + detection ref.mirror

25

picosecond acoustics combined with DAC F. Decremps et al, PRL 100, 3550 (2008)

Ti:sapphire laser /2

PBS1

A.O.M.

pump probe

pol.

A

/2

DAC

pol. /2 PBS2

B PBS3 /4

/4

/4 ref.mirror

/4

measurements of P in-situ resistive heating furnace up to ~500°C

26

Probe

Pump

e0 < 50 µm diamond

PTM

diamond sample

Probe

Pump

27

27

Time resolved reflectivity measurement in DAC F. Decremps et al, PRL 96 35502 (2008)

Quasicrystal AlPdMn, P=9.8 GPa

T

t

Brillouin oscillations are due to the transparent PTM (gives sound velocity and attenuation at a frequency f)

d v t/2

f 

1 2 n( ) v  T  28

28

Temporal method - relative variations of the signal with P - pump and probe may be perfectly collinear (difficult for an opaque material !) l-Hg 193°C

t0

 gives v knowing thickness

v(P) 

e0 t0 ( P)

29

Surface imaging Y. Sugawara et al PRL 88, 185504 (2002)

in liquid Hg

duration : 13.2 ns flaser=80MHz  Tlaser =12.55 ns (color scale adapted for each image) 100 m  parallel and undeformed diamond culets  homogeneous liquid sample

100 m 30

Movie analysis S.Ayrinhac et al J.Chem.Phys. 105 041906 (2014)

r/r

l-Hg, p=1 GPa, T=30°C 100

center (µm) DistanceRadius from the (µm)

integrated intensity profile @ t=5.2 ns

(a.u.)

90

4

80 70

2.8

60

1.5

50 40

0.25

30 20

-1

10 0 0

5

10

15

20

Time (ns)

Tlaser  12.55 ns

25

30

35

Time (ns)

This picture shows all the acoustic informations provided by this experiment How to explain the evolution of the ripples radius ?

31

The origin of circles at the surface

diam.

liq.

diam.

e(t) R(t) pump

e0

probe

acoustic diffraction • spot :  ~ 3 m •  ~ 0.6 GHz  ac~ 1 m

R 2 (t )  e 2 (t )  e02

e0  v(t0    pTlaser ) e(t )  v(t    pTlaser ) v : sound velocity t0: time when the perturbation reach the surface  R(t=t0)=0  : pump-probe coincidence delay (fixed) p : integer (fixed)

32

r/r

l-Hg, P=1 GPa, T=30°C 100

(a.u.)

L T

90

4

Radius (µm)

80 70

2.8

fit R(t) : free parameters v and t0  thickness e0

60

1.5

50 40

0.25

30

- reflexions (not fit) 1 and 2 round-trips

20

-1

10 0 0

5

t0

10

15

20

25

30

35

Time (ns)

- for bulk waves the R(t) function is non-linear - for surface waves, R(t) is linear surface skimming bulk waves (SSBW) L & T

R(t )  v e 2  e0 R(t )  v(t  t0 )

2

33

surface skimming bulk waves (SSBW) also called CRL (critically refracted longitudinal wave) - generated at a critical angle c

Refraction law for acoustics, where n  1/v

diamond

sin 1 sin  2  VL1 VL 2

liquid

 0



c

sin  cL 

VL1 VL 2

-2 critical angles : for vL and vT  SSBWs : L and T they propagate in the diamond (vL=18 km/s, and vT=12 km/s)

34

Taking account diffraction S.Ayrinhac et al, to be published (2015)

When e0 decreases, the wavefront is not strictly spherical

light beam

sound beam

Rayleigh length zR Gaussian acoustic transducer

The radius of curvature vary with z

  zR 2  C ( z )  z 1       z  

2   2 e z   2 2 2 R R  (e  e0 ) 1      e  e0  e  

corrective term zR as a free parameter when fitting R(t)

35

Comparison imagery / temporal methods

Imagery method

Temporal method

gives velocity v and thickness e0

t0 is accurately determined 1 scan ~ 10 s (very fast)

1 scan ~ 4h (time consuming)

e0 is needed to obtain v

 2 complementary methods to measure one isotherm

36

Picosecond acoustics at HP : summary • the temporal domain of study of ps acoustics (~10 ns) is well adapted to the volume of the sample in DAC (vsound ≈ 5000 m. s-1 = 5 µm.ps-1) • study of opaque, transparent, single- or poly-crystalline solids, liquids, nanomaterials, etc  transparents samples need a metallic coating • viscoelastic, thermal, thermodynamical properties • frequential domain complementary to other techniques [1GHz–1THz] • non-contact technique • possibility to reach extreme P and T > 300 GPa (DAC) > 1000 K (laser heating)

37

37

Outline 1. Why studying matter at extreme conditions ? 2. Combining diamond anvil cell with ps acoustics 3. Some achievements

Son et lumière: from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

38

Phase transitions

sound velocity (km/s)

sound velocity is a good probe to detect phase transitions Tin (Sn)

Gallium (Ga)

L.Xu et al, JAP 115 164 903 (2014)

S.Ayrinhac et al, to be published (2015)

(e0 supposed constant)

39

 another method to detect phase transitions is the modification of the pattern (example in Ga)

elliptic pattern (polycristalline solid)

circular pattern (liquid)

40

Melting line New determination of the melting line of liquid Ga

S.Ayrinhac et al (2015)

Simon-Glatzel equation

 P  Pt  T  Tt   1  a 

1/ c

Parameters (fit) : a= 24 GPa c=0.51 Triple point Ga-II/III/liq. Pt=3 GPa Tt=316 K

41

Adiabatic sound velocities

in liquid Ga, up to 8 Gpa and 540 K

 no abrupt or gradual transition in this range of P and T  why the propagation of sound is adiabatic rather than isothermal ?

42

Why adiabatic ? N.H.Fletcher, AJP, 42 487 (1974) A.B.Coppens et al, JASA 41 1443 (1966)

 In a majority of cases, the propagation of sound can be considered adiabatic (isentropic dS=0)

The heat do not flow from high T regions to low T regions if fwave < flim f lim

v 2  0CV  2

In liquid metals flim ~ 0.1 THz 43

Density from acoustics L.A.Davis R.B.Gordon, J.Chem. Phys 46 2650 (1967)

From adiabatic sound velocity vS to isothermal equation of state (P,T)

T C P    S CV

where  is the adiabatic coefficient

T P2 T   S  CP

with  S 

1 v 2S

and T 

1  P2       2 T CP  P T v S

1        P T

P  

P   P2   1   ( P, T )   ( P0 , T )    2 dP  T   dP v Cp  P 0 S  P 0 P

a smoothing function vS(P) is necessary

iterative procedure

1        T  P

T  Cp      2  P T

 1  2    1    T   P  

 This method gives density with an excellent accuracy E.Wilhelm, J. Solution Chem. 39 1777 (2010) 44

Density from acoustics From adiabatic sound velocity to isothermal equation of state

L.A.Davis R.B.Gordon, J.Chem. Phys 46 2650 (1967) Daridon et al, Int. J. Thermophys. 19 145 (1998)

input v S ( P, T )

(smoothed and interpolated)

 ( P0 , T )  P ( P0 , T ) C P ( P0 , T )

P0

P

T=1 K

T

45

Density from acoustics From adiabatic sound velocity to isothermal equation of state input v S ( P, T )

(smoothed and interpolated)

 ( P0 , T )  P ( P0 , T ) C P ( P0 , T )

L.A.Davis R.B.Gordon, J.Chem. Phys 46 2650 (1967) Daridon et al, Int. J. Thermophys. 19 145 (1998)

T P2 1. T   S  CP 1    2.     

  T  P

3.  Cp    T 2  P T

 1  2     1    T  P 

P=0.01 GPa P0

...

P1

P2

P

T=1 K

T

46

Density from acoustics From adiabatic sound velocity to isothermal equation of state input v S ( P, T )

(smoothed and interpolated)

 ( P0 , T )  P ( P0 , T ) C P ( P0 , T )

output

T P2 1. T   S  CP

 ( P, T )  P ( P, T )

1    2.     

  T  P

3.  Cp    T 2  P T

Davis & Gordon JCP 46 2650 (1967) Daridon et al, International journal of thermophysics 19 145 (1998)

C P ( P, T )

 1  2     1    T  P 

P=0.01 GPa P0

...

P1

P2

P

T=1 K

T

47

Density from acoustics From adiabatic sound velocity to isothermal equation of state input v S ( P, T )

(smoothed and interpolated)

 ( P0 , T )  P ( P0 , T ) C P ( P0 , T )

output

T P2 1. T   S  CP

 ( P, T )  P ( P, T )

1    2.     

  T  P

3.  Cp    T 2  P T

C P ( P, T )

 1  2     1    T  P 

P=0.01 GPa P0

...

P1

P2

Davis & Gordon JCP 46 2650 (1967) Daridon et al, International journal of thermophysics 19 145 (1998)

P

- All the thermodynamical quantities are obtainable (bulk modulus, etc)

T=1 K

T

48

Density of liquid Ga  large discrepancies between data obtained by various techniques

20°C 50°C 100°C 150°C 200°C 250°C 300°C

Yu et al, JAP 111 112269 (2012) Lyapin et al, JETP 107 818 (2008) Li et al, APL 105 041906 (2014) Köster et al, BBPC 74 43 (1970) Tamura et al, JNCS 156 650 (1993)

 our data from sound velocity are in excellent agreement with Köster Who have used a more direct technique to determine  49

Equation of state (EOS)

 EOS is an analytical formula of (P,T) • based on statistical physics • based on intermolecular potentials • empirical (reasonable assumptions)

EOS permits • extrapolation to extreme P and T conditions not experimentally accessible (without the presence of a phase transition) • interpolation (to obtain accurately the derived quantities) The best known example : ideal gas law

PV  nRT

However, in liquids (and solids), it is more complicated…

50

Murnaghan EOS F.D.Murnaghan, Proc. Symp. Appl. Math. 1 167 (1949)

For a small increase in P, bulk modulus B(P) is constant

BT  B0

and

 P  BT  V    V  T

V  V0e  P / B0

However, at high P, this relation becomes invalid Because B increases with pressure due to the variation of elastic properties with P

BT  B0  B P  B P  ... with ' 0

'' 0

2

 2B   B  '' B   B0   2   P   P 0  P  P 0 ' 0

At first order : Murnaghan equation

 P  BT  B0  B P  V    V  T ' 0

 B  V  V0 1  P   B0  ' 0

1/ B0'

valid up to ~ 10 GPa

51

Many other EOS J.R.McDonald, Rev. Mod. Phys. 41 316 (1969)

1/ 3

V  1  X  (1 X ) 3 ' Vinet   P  3B0 e ; X  ;   ( B0  1) 2   X 2 come from a particular potential  V0  P. Vinet et al, J. Phys. C: Solid State Phys. 19 L467 (1986)

Birch-Murnaghan F.Birch, J. Geophys.Res., 57 227 (1952)

7 5 2      3 3B0  V 0  3  V 0  3   3 V 0    ' P     1  (4  B0 )    1   V   2  V   V    4    

52

Which is the better EOS ? J.R.McDonald and D.R.Powell, J.Res.Nat.Bur.Stand 75 441 (1971)

2 methods are possible : • usually, ρ(P,T) is fitted by different EOS B0 and B0' are unknown the better fit determines the better values • Comparison between empirical EOS (without fit) knowing B0, B0' and ρ(P,T)

calc  exp (%) exp If this quantity is zero, the EOS match perfectly ρ(P,T)

53

Equations of state of l-Hg S.Ayrinhac et al, J.Chem.Phys. 105 041906 (2014)

Comparison between empirical EOS

l-Hg, T=240°C B0=18.5 GPa B0'=10.7

Birch Murnaghan EOS can be used in the case of liquid mercury instead of more complicated formulas (soft spheres, etc). 54

Elastic constants (stiffness tensor) in Si monocrystal J.P.Wolfe, Physics Today, pp.44-50, dec. 1980 J.P.Wolfe, Physics Today, pp.34-40, sept. 1995 S.Guilbaud, B.Audoin JASA 105 2226 (1999) F.Decremps et al PRB 82 104119 (2010)

Hooke's law (for a common spring)

F  kl Generalized Hooke's law

 ij  Cijklkl

55

Elastic constants (stiffness tensor) in Si monocrystal J.P.Wolfe, Physics Today, pp.44-50, dec. 1980 J.P.Wolfe, Physics Today, pp.34-40, sept. 1995 S.Guilbaud, B.Audoin JASA 105 2226 (1999) F.Decremps et al PRB 82 104119 (2010)

Hooke's law (for a common spring)

F  kl Generalized Hooke's law

 ij  Cijklkl

The elastic information on an anisotropic solid is given by his stiffness tensor C (expressed as a matrix) with 21 components

For Si (and cubic crystals) : 3 independent constants C11, C12 and C44 0 0   C11 C12 C12 0   C C C 0 0 0  12  11 12 C C12 C11 0 0 0  12  C  0 0 C44 0 0   0  0  0 0 0 C 0 44    0  0 0 0 0 C 44   56

 complex patterns appearing on the surface  3 polarizations waves

57

Experiment

Simulation

58

Equation of state : bulk modulus B

C11  2C12 B 3

 P  B  V    V   59

Lattice stability

Stability criterium (Born criterium) critical pressure which the ideal lattice become unstable, for example :

1 C11  C12   0 2 F.Mouhat, F.-X.Coudert PRB 90 224104 (2014)

Violation of the stability criterium around 120 GPa

→ precursor to the amorphization or melting 60

Sound velocity in polycristalline Fe F.Decremps et al Geophys.Lett. 41 1459 (2014)

Fe is the most abundant element in the Earth core

61

 up to 152 GPa (one order of magnitude higher than previously published ultrasonic data)

F.Decremps et al Geophys.Lett. 41 1459 (2014)

PREM

bcp-hcp structural transition

 density is obtained with an EOS  clearly out of the PREM model, confirming that light elements should be present in the Earth's core

62

Thank you for your attention

Son et lumière: from microphotonics to nanophononics Les Houches, France, February 16-27th, 2015

63