Diapositive 1 - Simon Ayrinhac

Sep 6, 2013 - Page 2. 2. Liquid mercury. Simple liquid. • well described by hard sphere model. • no orientational .... surface skimming bulk waves (SSBW) in ...
1MB taille 3 téléchargements 344 vues
Equation of state of liquid mercury up to 7 GPa and 520 K Simon Ayrinhac, Michel Gauthier, Frédéric Decremps, Livia Bove, Marc Morand, Gilles Le Marchand, Frédéric Bergame, Julien Philippe

EHPRG 51 – London – 1-6 september 2013

1

Liquid mercury Simple liquid Eslami J.Nucl.Mat. 336 135 (2005) • well described by hard sphere model • no orientational or internal vibrational degrees of freedom Not simple metal • relativistic effects : 6s-5d orbitals hybridization Singh PRB 49 4954 (1994)

contracted 6s orbitals (weak bond  liquid) • gradual metal-nonmetal

Norrby, J.Chem.Edu, 68, 110 (1991) transition (~9 g/cm3) F.Hensel, Metal-to-Nonmetal Transitions (book), pp 23-35 (2010)

 accurate pair potential needed for simulations Bomont JCP 124 054504 (2006)

 the repulsive part of the effective pair potential play a dominant role in M-NM transition S.Munejiri et al JPCM 10 4963 (1998) 2

Equation of state (EOS) • P-V-T relation (unique for equilibrium chemical phase)  derived thermodynamical quantities

P 

1  V    V  T  P

 P  BT  V    V  T

 B  BT'   T   P T

...

 searching of an accurate analytical form V(P,T)

• EOS can be obtained from the velocity measurements at high P Davis & Gordon J. Chem. Phys. 46 2650 (1967) Decremps et al RSI 80 073902 (2009)

3

picosecond acoustic technic H.J. Maris, Brown University, 1986

Generation (pump) pulsed laser 80 MHz =800 nm

Detection (probe)

heated region

light impulsion 100 fs

t (delay line)

R (t ) R

RR

photodiode

surface displacements refractive index variations 0

2

4

6

8

10

12

t (ns)

Lock-in amplifier : measure of small changes in the optical reflectivity, R/R  10-5

4

picosecond acoustics @ IMPMC B.Perrin et al, Physica B 263, 571 (1999) F.Decremps et al, PRL 100, 3550 (2008)

Ti:sapphire laser /2

PBS1

A.O.M.

pump

delay line (~13.5 ns)

probe

pol.

A

/2

DAC

pol. /2 PBS2

B PBS3 /4

/4

/4

/4 ref.mirror

surface imaging

Michelson interferometer + detection

5

Surface imaging Y. Sugawara, O.B. Wright, O. Matsuda, et al PRL 88, 185504 (2002)

in the liquid, at ambiant

duration : 13.2 ns flaser=80MHz  Tlaser =12.55 ns 100 m

 parallel and undeformed culets  homogeneous sample

100 m 6

Movie analysis r/r

l-Hg, p=1 GPa, T=30°C 100

(a.u.)

90

4

80

Radius (µm)

integrated intensity profile @ t=5.2 ns

70

2.8

60

1.5

50 40

0.25

30 20

-1

10 0 0

5

10

15

20

Time (ns)

Tlaser  12.55 ns

25

30

35

Time (ns)

How to extract sound velocity ? 7

acoustic diffraction • spot :  ~ 3 m •  ~ 0.6 GHz  ac~ 1 m

e(t)

R(t) pump

diam.

e0

l-Hg

probe

diam.

R(t )  e 2 (t )  e02 e0  v(t0    pTlaser ) e(t )  v(t    pTlaser ) v : sound velocity t0: time when the perturbation reach the surface  R(t=t0)=0  : pump-probe coincidence delay (fixed) p : integer (fixed)

8

r/r

l-Hg, P=1 GPa, T=30°C 100

(a.u.)

L T

90

4

Radius (µm)

80 70

2.8

fit R(t) : free parameters v and t0  thickness e0

60

1.5

50 40

- reflexions (calculus) 1 and 2 round-trips

0.25

30 20

-1

10 0 0

5

t0

10

15

20

Time (ns)

25

30

35

- surface skimming bulk waves (SSBW) in the diamond

9

Adiabatic sound velocity 2200

 movies (slow !)  peak shift (faster !)

Davis & Gordon T=23°C T=110°C T=193°C T=240°C

Sound velocity (m/s)

2100 2000 1900

[J. Chem. Phys. 46 2650 (1967)]

1800 1700 1600

l-Hg

1500 1400 0

e0 v t0    pTlaser

1

2

3

4

5

6

Pressure (GPa)

10

Equation of state P0

...

P1

P2

P2=P1+ P P=0.01 GPa T=1 K

T

input

P

 ( P, T )  1 (T )

output P2

v( P, T ) (smoothed and interpolated)

 ( P0 , T )  P ( P0 , T ) C P ( P0 , T )

Davis J. Chem. Phys. 46 2650 (1967) Daridon et al, International journal of thermophysics 19 145 (1998)

P

dP T 2  2 (T )  1 (T )   2   ( P, T )dP  v C P 1 P1 P1 2  

1   2     2  T  p

(smoothed)

repeated until convergence of 2

 ( P, T )  0.15%  P ( P, T )  3.8% C P ( P, T )  3.4%

  2  1  ( P  P1 )  1  P2  P1 

 ( P, T )  

T  Cp     2  P T

 1  2   1    T  P 

 C  CP2   P  ( P2  P1 )  CP 1  P T 11

Results density  densité thermal expansion coeff. P

• in good agreement with : Holman J. Phys. Chem. Ref. Data (1994) Grindley J. Chem. Phys. 54, 3983 (1971) • in good agreement with : Holman J. Phys. Chem. Ref. Data (1994) Davis J. Chem. Phys. 46 2650 (1967) 12

bulk modulus BT  P  BT  V    V  T

first derivative B'T  B  BT'   T   P T

 BT(P=0) and BT'(P=0) essential parameters for the analytic EOS 13

Equations of state

Murnaghan Kumari-Dass

  B'   V  V0 1   0  P    B0  

1/ B0'

(Vcalc-Vexp)/Vexp (%)

2 Vcalc  Vexp  B0 and B0' known (%) _ B0=18.5 GPa Vexp B0'=10.7 1  comparison between EOS

l-Hg, T=240°C

Kumari-Dass Birch-Murnaghan generalized Rose

0

GMA

-1

V  [(1   )e ZP   ]1/ V0

Taylor expansion

Vinet Onat-Vaisnys

-2 0

Taylor expansion

Murnaghan

 V  1  V  ' P  B0    B0 ( B0  1)   V  2  V 

1

2

3

4

5

6

7

2

P (GPa)

1/ 3

Vinet

Birch-Murnaghan

V  1  X  (1 X ) 3 P  3B0 e ; X    ;  ( B0'  1) 2 X 2  V0  3B P 0 2

7 5 2     3 3  3 V 0 V 0 3 V 0        '       1  (4  B0 )    1   V   V    4  V      

14

Conclusions • surface imaging technic at nanosecond scale • sound velocity (and elastic constants) measurements at high T and P • equation of state of l-Hg up to 7 GPa • Birch-Murnaghan

Perspectives - alkali metals at high density (complex phase diagram, possible liquid-liquid transitions) - geological fluids (l-Fe, FeSi, etc) - metallic glasses (amorphous-amorphous transitions)

15

THANK YOU FOR YOUR ATTENTION

EHPRG 51 – London – 1-6 september 2013

16

Liquid Hg phase diagram W.Klement, A. Jayaraman, and G. C. Kennedy, Transformations in mercury at high pressures, Phys. Rev. 131 1 (1963)

17