Aucun titre de diapositive

Advanced Mechanics. FRANCE ... Design solutions. • Analysis of results ... Materials. Topology. Geometry r f. R. Design Models. Analysis. Models. Deformations.
2MB taille 3 téléchargements 381 vues
STRUCTURAL DESIGN LEARNING BY  BUILDING REDUCED MODELS A. MOHAMED, M. DREAN, J. COUDEN and J.­C. FAUROUX

French Institute for  Advanced Mechanics FRANCE   1

 

Presentation Outline  •  Introduction •  Design process •  Active design learning •  Learning by doing •  Design solutions •  Analysis of results   2

•  Conclusion  

Structural  design  process Time effects

Fabrication Methods

Environment

Loadings

Topology Geometry Materials fR

fC

r

c

Design  Models Analysis Models

Performance Criteria Human Errors

Deformations

Political Factors

Actions

Economical  Factors

fS

  3

s

 

Learning  process •  Reception step •  External information (observations) •  Internal information (introspective) •  Processing step •  Memorization •  Reasoning: inductive / deductive •  Reflection / action •  Introspection / Interaction with others   4

 

Increase learning  efficiency • present phenomena related to theory • balance conceptual information (intuitive) and  concrete information (sensing) • use extensively sketches, plots, schematics, and  physical demonstrations • demonstrate by physical analogies • introduce general principles by experimental  observations • provid free time for students to think about the  material being presented and for active student    5

participation 

 

Cooperative Learning In opposition to competing learning, the cooperative learning  aims to make Students work together to:             learn, solve problems, discuss and compare ideas, … • suitable for subject­based learning • organized through small groups that develop   interdependent and self­directed works Academically weak students get the benefit of being tutored by stronger classmates, 

. and stronger students get the deep understanding  that comes from teaching   6

 

Problem­oriented learning Before students learn some knowledge they are given a problem

• Need for learning before solving the problem • Learning environment: active, cooperative, self­assessed    motivated and highly effective 

Posing the problem before learning tends to motivate students  Students know why they are learning the new knowledge  Facilitate store of knowledge in memory for later recall    7

 

Learning by doing Introduce the  theory by productive works of the students

 The only way a skill can be developed is practice:  • trying something,  • seeing how well or poorly it works, • reflecting on how to do it differently,  • then trying it again and seeing if it works better.

• More productive work to do with allocated time • Efficient way of active learning   8

 

How to develop the Engineering Sense ? • Solid scientific background • Design principles • Experience development • Problem­oriented thinking • Analogy­based understanding • Interdisciplinary view and links   9

 

Embodiment of schemes

• Needs • Analysis of the problem • Conceptual design • Embodiment of schemes • Detailing   10

  • Final project

Detailing

Final  project

Conceptual design

Selected  schemes

Analysis of problem

Statement of problem

Needs

Structural design process

 

11

  St r

ho

 C

im iz a

tio n

D

A

do lo gy

el in g

tu re

s

 

M at er ia ls

St ru c

ss em bl y 

 A

nd

an d 

ho ic e  of   od

et

al  O pt

uc tu r

g  a

C

M

M

ca l 



an

Po du ct s 

io n 

ri

at Fo rm in

ic

eo m et

Fa br

G



in g 

n  o

M od el

es ig

D

Transverse active learning Multidisciplinarity

Specification  Structural

of  needs  Prototype 

Example 2: Bridge structure Needs Loading Point

• Geometry and clearance

15N

• Materials • Vertical load • Horizontal load

(150, 400, 200) Support Surface (foundation)

z

• Support points

70N/m

y

x

100 mm

100 mm 700 mm 800 mm 80mm   40mm

120 mm

100 mm

160 mm

  12

250 mm

 

300 mm Navigation zone

250 mm

Solutions of type: Suspension

Rigid supported  bridge

Suspended  cable bridge   13

 

Solution of type: Arch 

Composite  compression arch

Suspended arch   14

 

Solution of type: Frame/truss

Rigid frame              Rigid 3D truss   15

 

Evaluation criteria •  Conceptual design of the structure •  Structural performance: cost against rigidity •  Creativity and originality of the work •  Use of materials and fabrication facilities •  Esthetic et care given to construction

  16

 

Evaluation  1­ Mechanical  performance

  17

 

Evaluation  2­ Innovation and esthetic

  18

 

Comparison Mechanical/originality 

  19

 

Faced Difficulties

• Organization difficulties • Multidisciplinary way of thinking • Implication of many courses • useful application of knowledge

  20

 

Conclusion • Learning­by­doing process • Large Motivation • Solid understanding of design basis • Appreciation of practical difficulties • Experimental­numerical links • How­to­improve development   21