Dynamic fracture of composite hollow spheres .fr

Longitudinal wave speed cl = 3250 ± 50 m.s−1. Shear wave speed ct = 1760 ± 50 m.s−1 ... Open source. Principles undeformable elements interacting.
2MB taille 2 téléchargements 307 vues
Dynamic fracture of composite hollow spheres Experimental and numerical approach

August 23, 2016 24th International Congress of Theoretical and Applied Mechanics Montréal A. C ORÉ, J.B. KOPP, P. V IOT, F. DAU, J.L. C HARLES Arts et Métiers ParisTech, I2M-DUMAS, UMR 5295 CNRS, 33400 Talence, France

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Industrial context Objective Introduction Experimental tests

SAMBA project : Shock Absorber Material for Birdshield Application Technological solution Hollow spheres Aim : To study the energy dissipation mechanisms (fracture, friction...) under dynamic solicitations.

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

2 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

3

Numerical modelling

4

Application on hollow spheres

5

Conclusions and perspectives

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

3 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

3

Numerical modelling

4

Application on hollow spheres

5

Conclusions and perspectives

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

4 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

structural characteristics Hollow spheres made by ATECA (french PME, Montauban)

Objective

Geometry 1 to 30 mm in diameter Constitutive material epoxy resin with aggregates Mechanical behaviour elastic-brittle, subjected to dynamic crack propagation

Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

5 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

structural characteristics Hollow spheres made by ATECA (french PME, Montauban)

Objective

Geometry 1 to 30 mm in diameter Constitutive material epoxy resin with aggregates Mechanical behaviour elastic-brittle, subjected to dynamic crack propagation

Introduction Experimental tests Numerical modelling

Methodology Characterization of a hollow sphere in quasi-static and dynamic compression Numerical model of the dynamic fracture Estimation of the critical dynamic energy release rate

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

5 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

Objective

Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic

3

Numerical modelling

4

Application on hollow spheres

5

Conclusions and perspectives

Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

6 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Experimental procedure Uni-axial compressive tests conducted on one classical compression machine at room temperature

Objective

Geometry Hollow sphere of 30 mm in diameter and 1.2 mm thick Compressive velocity 5 mm/min

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

7 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Observations Elastic-brittle behaviour

Objective

Elastic phase with failure→ dynamic fracture Significant dispersion → geometrical defaults of hollow spheres induced by the manufacturing process

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

7 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Experimental procedure Uni-axial compressive tests conducted on a fly wheel machine at room temperature

Objective

Geometry Hollow sphere of 30 mm in diameter and 1.2 mm thick Compressive velocity 2 m/s

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

8 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Observations Elastic-brittle behaviour but with :

Objective

Increase of rigidity and force at failure Fmax + 50% Greater dispersion → dynamic effects

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

8 / 26

08/23/2016 ICTAM 2016 Montréal

Dynamic fracture of composite hollow spheres

Crack tip velocity calculation High speed cinematography with Photron SA-5 : 75 000 fps, resolution of 320x264 pixels

Crack tip position measurement Objective

Spherical coordinates → taking into account out of plane displacement Linear least square to calculate the crack tip average velocity

Introduction Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

9 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Rayleigh wave speed calculation Wave speed measurement on a cylindrical specimen (24 mm in diameter and 10 mm in length)

Objective Introduction Experimental tests

Longitudinal wave speed cl = 3250 ± 50 m.s−1 Shear wave speed ct = 1760 ± 50 m.s−1 Rayleigh wave speed cr = 1632 ± 50 m.s−1 cr ≈

0.87 + 1.12ν 1+ν

(1)

ct

Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

10 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Critical energy release rate Objective Introduction

Elastic energy stored before failure → energy dissipated through the creation of new surfaces

GIc =

δW b∆a

∆l ∆t

(m/s) 0.08 2

Welas (J) 0.60±0.08 0.81±0.10

GIc (kJ/m2 ) 4.2±0.6 3.4±0.6

Experimental tests Compression tests in quasi-static Compression tests in dynamic Crack tip velocity Rayleigh wave speed Conclusions

Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

11 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Critical energy release rate Objective Introduction Experimental tests Compression tests in quasi-static

Elastic energy stored before failure → energy dissipated through the creation of new surfaces

GIc =

Welas (J) 0.60±0.08 0.81±0.10

GIc (kJ/m2 ) 4.2±0.6 3.4±0.6

Dynamic correction factor f (a) ˙ to take into account inertial effects : (2)

GIdc = f (a)G ˙ Ic First approximation (*) for a crack (mode I) in semi-infinite plate :

Rayleigh wave speed

f (a) ˙ =1−

Conclusions

Numerical modelling

(m/s) 0.08 2

Critical dynamic energy release rate

Compression tests in dynamic Crack tip velocity

∆l ∆t

δW b∆a

∆l ∆t

(mm/s) 0.08 2000

a/c ˙ r 0.12 ±0.02 0.14 ±0.02

a ˙

(3)

cr 2 G∗ Idc (kJ/m ) 3.7±0.6 2.9 ±0.6

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

11 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

3

Numerical modelling

Objective Introduction Experimental tests

Discrete Element Method Cohesive beams Elastic calibration Node release technique

Numerical modelling Discrete Element Method

4

Application on hollow spheres

5

Conclusions and perspectives

Cohesive beams Elastic calibration Node release technique

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

12 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Avantages Adapted to dynamic simulations (explicit scheme) Objective

Natural dynamic fracture Open source

Introduction Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Principles undeformable elements interacting Interactions : contacts, springs, potential forces, beams

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

13 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Discrete element method to simulate continuous material linear elastic macroscopic mechanical behaviour Objective Introduction

Calibration procedure : microscopic Young Modulus and radius ratio (RRµ = beams

Rbeam RDE

) of

Failure criterion based on the virial stress tensor and fracture energys Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

14 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Objective Introduction Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Application on hollow spheres

We find RRµ = 0.3 and Eµ = 356 GPa

Conclusions and perspectives

A. C ORÉ

15 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Node release technique Crack history (position, time) → Critical dynamic energy release rate

Objective

Plate size : L = 20 mm, H = 40 mm and B = 2 mm 20 000 elements

Introduction Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

16 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Fracture process zone Parameters of the fracture process zone :

Length of the damaged zone → set to 1 radius Objective

Relaxation scheme → set to a linear scheme

Introduction Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Application on hollow spheres Conclusions and perspectives F IGURE – Comparison of different lengths of the FPZ

F IGURE – Comparison of different relaxation schemes

A. C ORÉ

17 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Results Good agreement with analytical and finite element results

Objective

The DEM model allows to create complex crack paths

Introduction Experimental tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Node release technique

Application on hollow spheres Conclusions and perspectives

A. C ORÉ

18 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

3

Numerical modelling

4

Application on hollow spheres

5

Conclusions and perspectives

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

19 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

20 / 26

08/23/2016

Dynamic fracture of composite hollow spheres

ICTAM 2016 Montréal

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

20 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Results in mode I for hollow spheres High inertial effects Decrease of the dynamic correction factor with the thickness of the hollow sphere

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

A. C ORÉ

21 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Results in mode I for hollow spheres High inertial effects Decrease of the dynamic correction factor with the thickness of the hollow sphere

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

Application : new calculation of the critical dynamic energy release rate ∆l ∆t

(mm/s) 0.08 2000

a/c ˙ r 0.12 ±0.02 0.14 ±0.02

2 G∗ Idc (kJ/m ) 3.7±0.6 2.9 ±0.6

GIdc (kJ/m2 ) 0.84 ±0.5 0.4 ±0.3

A. C ORÉ

21 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Outline 1

Introduction

2

Experimental tests

3

Numerical modelling

4

Application on hollow spheres

5

Conclusions and perspectives

Objective Introduction Experimental tests Numerical modelling Application on hollow spheres

Conclusions Perspectives

Conclusions and perspectives Conclusions Perspectives

A. C ORÉ

22 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Conclusions Experimental

Objective Introduction

Compression tests on composite hollow spheres

Increase of the force at failure with the compressive velocity Increase of the crack tip velocity with the compressive velocity

Experimental tests Numerical modelling Application on hollow spheres Conclusions and perspectives

Energy dissipated mainly by dynamic fracture

Numerical Critical dynamic energy release rate estimated with the Discrete Element Method

Relaxation scheme parameters identified Close to analytical and finite element results for crack propagation on a semi-infinite plate Dynamic correction factor estimated for crack propagation on hollow spheres

Conclusions Perspectives

F IGURE – Example of a sinusoidal crack path on a plate with the DEM

A. C ORÉ

23 / 26

Dynamic fracture of composite hollow spheres

08/23/2016 ICTAM 2016 Montréal

Perspectives Experimental

Objective

Strip Band Specimen (SBS) tests for more accurate measurements Evaluate the critical dynamic energy release rate for different crack tip velocity

Introduction Experimental tests Numerical modelling

Numerical Stress - energy failure criterion with the DEM Multi-spheres model Macroscopic model

Application on hollow spheres Conclusions and perspectives Conclusions Perspectives

F IGURE – Multi-Spheres test

F IGURE – Multi-sphere DEM model

A. C ORÉ

24 / 26

Thanks for your attention Any questions ? Arthur C ORÉ

PhD candidate

Arts & Métiers ParisTech - Centre de Bordeaux - Talence, I2M Dynamic department Esplanade des Arts et Métiers, 33400 Talence, France [email protected]