friction and wear properties of cn coatings in the flow of n gas - Boyko

Current density. 1.5 kV. Acc. voltage. N ion beam. Mixing. 5, 10, 20, 30, 50 Å/s. Coating speed. Carbon : 99.999 %. Target. Evaporation. Deposition conditions.
4MB taille 6 téléchargements 292 vues
24th IRG-OECD Meeting, October 16-17 2003, Portoroz, Slovenia

FRICTION AND WEAR PROPERTIES OF CNX COATINGS IN THE FLOW OF N2 GAS Koji Kato, Shin Toyokawa, Koshi Adachi, Boyko Stoimenov Tribology Laboratory, Tohoku University, Sendai, Japan

N2

CNx Si3N4 Si3N4

CNx

β-C3N4 C N

[A. I. Liu, M. L. Cohen, 1989]

Past works on CNx coating and N2 lubrication Sliding speed: 4 mm/s

CNx coating on Si wafer

Load

Evacuation

44.0-140.6mN Strain gauge Si3N4 ball

N2 Ar Air

Vacuum chamber

[N. Umehara, Sato, K. Kato 1997] 0.5 Pin : Si N ball (r=4.0mm, R 3

4

Friction Frictioncoefficient coefficient, µμ

Disk : 100 nm CNx / Si (R 0.4

0.3

max

max

= 15 nm)

= 1~3 nm)

Normal load : 100 mN Maximum contact pressure : 200 MPa Sliding velocity : 4 mm/s

0.36

Si3N4

240 friction cycles

CNx

Si Wafer 0.2

0.16

0.1

0.05 0.009 0

Air 5

(10 Pa)

Vacuum -4

(2x10 Pa)

N 2

0.03

CO 2 4

(7.4x10 Pa)

O 2

[N. Umehara,M.Tatsuno, K. Kato, 1999]

Friction coefficient μ μ Friction coefficient

0.20

Disk : a-CNx on Si (t=100nm) Ball : Si3N4 (r=4.0mm) Normal load : 125-132mN mm/s-3m/s Slidnig speed : 44.2x10

0.152

0.15

0.10

0.081 Si3N4

0.05

0

CNx

0.007

Si Wafer

0

1

2

3

4

5

6

1044Pa Pressure of N 2 ,P,x x10 Pa

7

8

Air

X-Z stage

Spring

N2 gas Inner diameter 4.5 mm

Strain gages Si3N4 ball

Disk

Si3N4 CNx Si-wafer

Ball-on disk tester

Frictioncoefficient, coefficient μ Friction μ

[K. Adachi, K. Kato, Ueno, 2000]

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

N2

0 l/min

N2

1.2 l/min

4.8 l/min

Dis k: CNx(100nm)/S i3 N4 P in: S i3 N4 ba ll (r=4 mm) Norma l loa d: 200 mN Rota ry s pe ed: 250 rpm(0.4 m/s ) Air Air

0

2

4

6

8

10

Number of friction cycles x103 Number of cycles ×103N, cycles

12

Air Spring

N2

N2 gas

N2 gas

Inner φ 4.5mm

Si3N4 ball

Test piece

10 mm

N2 gas φ

[K. Adachi, K. Kato, Ueno, 2000] 10 mm

Friction coefficient,

0.25 0.2 0.15 0.1

Coating: 100n m CNx Substrate: Si 3 N 4 Ball: Si 3 N 4 (r = 4 mm) Normal load: 200 mN Rotatrypeed: 250 rpm Flow rate: 3.6 l/min

N2 gas φ

Air

0.05 0 0

45

90

135

Blow angle of N2 gas φ, degree

180

[K. Adachi, K. Kato, Ueno, 2000] 0.3 Disk: CNx(100nm)/Si3N4,SiC Pin: Si3N4 ball (r=4mm) Normal load: 200mN Rotary speed: 250rpm

Friction coefficient, μ μ

0.25

Air

0.2

0.15 0.1

0.05 0 0

2

4

6

8

Flow rate of N2 gas Q, l/min

10

12

What is the best combination among Si3N4/CNx , CNx/CNx and C/C? N2 Si3N4

C-coating Si3N4

CNx

Si3N4

C-coating

Si3N4 N2

CNx Si3N4

N2

Ar CNx

O2

CO2

Air

Si3N4

Is N2 gas blow better than Ar, O2, CO2 or open air for lubricating CNx/CNx contact?

Si3N4 substrate

Carbon (Evaporated)

N ion (mixing)

Carbon target

Electron beam

Deposition conditions Target Evaporation

5, 10, 20, 30, 50 Å/s

Coating speed N ion beam

Mixing

Pressure

Carbon : 99.999 %

Acc. voltage

1.5 kV

Current density

90 μA/cm2

Gas flow

N2: 3.0 SCCM *

Background

< 2.0×10-4 Pa

Operating

7.1×10-3 Pa

Substrate

Si3N4

Coating thickness

about 400nm

Rotation speed

4 rpm

N ion beam Sputter cleaning

Acc. Voltage

1.5 kV

Current density

100 μA/cm2

Gas flow

N2: 3.0 SCCM *

Duration

5 minutes

*SCCM: Standard Cubic Centimeter per Minute

The surface of CNx coating on Si3N4 substrate disk

The surface of CNx coating on Si3N4 substrate ball

5 μm

Si3N4 ball

100 μm

5 μm

CNx coated Si3N4 ball thickness : 400nm

100 μm

Hardness of CNx and C coatings 45

Indentation hardness H, GPa

40 35

CNx and C on Si3N4 (t=400nm) Maximum indentation load : 980μ N Maximum indentation depth : 50-64nm

30 25 20 15 10 5 0 5Å/s Å/s

10Å/s Å/s

20Å/s Å/s

30Å/s Å/s

50Å/s Å/s

C 20Å/s Å/s

Evaporation speed of CNx and C coating Ve, Å /s

Si3N4/CNx

vs.

CNx/CNx

N2 Si3N4 Si3N4

CNx

N2

CNx Si3N4 Si3N4

CNx

Friction in N2 gas blow CNx / CNx sliding

Si3N4 / CNx sliding 0.6

0.6

Disk : CNx(Ra=0.025μ m) on Si3N4 (t=400nm) Ball : Si3N4 (r=4.0mm) Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s 2 Gas blow rate : 2.10 cc/mm s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Hv(CNx) : 28.8GPa

0.4

0.5

Friction coefficient μ

Friction coefficient μ

0.5

Disk : CNx(Ra=0.025μ m) on Si3N4 (t=400nm) Ball : CNx coated Si3N4 (r=4.0mm) Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s Gas blow rate : 2.10 cc/mm2s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Hv(CNx) : 28.8GPa

0.4

No blow (in air) N2 gas blow

0.3

0.3

0.2

0.2

No blow (in air) N2 gas blow

0.1

0.1

0

0 0

2000

4000

6000

8000

10000

0

2000

4000

6000

8000

Number of cycles N, cycles

Number of cycles N, cycles

CNx / CNx sliding : low and stable friction faster than CNx / Si3N4 sliding μ=0.03 (blow) μ=0.15 (in air)

10000

Wear of ball in N2 gas blow Friction coefficient μ

3.5

Disk : CNx(Ra=0.025μm) on Si3N4 (t=400nm) Ball : Si3N4 (r=4.0mm) Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s Gas blow rate : 2.10 cc/mm2s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Hv(CNx) : 28.8GPa

0.3

0.2

0.1

3 2.5 2 1.5 1

Friction coefficient μ

4

3

4.5 0.4

0.5

-5

5

mm

Friction coefficient μ

5.5

Wear volume of ball

0.5

6

Disk : CNx(Ra=0.025μm) on Si3N4 (t=400nm) Ball : CNx coated Si3N4 (r=4.0mm) Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s Gas blow rate : 2.10 cc/mm2s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Hv(CNx) : 28.8GPa

0.4

0.3

0

4000

8000

12000

Number of cycles N, cycles

0 20000

16000

5

4.5 4 3.5 3

0.2

Friction coefficient μ

2.5

Wear volume of ball

2 1.5

0.1

1

0.5 0

5.5 -5

6

Wear volume of ball V, x10

0.6

CNx / CNx sliding

0.6

0.5 0

0 0

μ=0.03 (blow) μ=0.15 (in air)

4000

8000

12000

16000

Number of cycles N, cycles

at 500~20000cycles

at 500~20000cycles

Ws,s = 5.89x10-8 mm3/Nm

Ws,s = 1.13x10-8 mm3/Nm

20000

Wear volume of ball V, x10 3 mm

Si3N4 / CNx sliding

C/C

vs. C-coating

Si3N4 Si3N4

CNx/CNx

N2

C-coating

N2

CNx Si3N4 Si3N4

CNx

0.6

Disk : CNx(Ra=0.025μ m) on Si3N4 (t=400nm) C(Ra=0.035mm) on Si3N4 (t=400nm) C/C with N2 N2 gas blow Ball : CNx, C coated Si3N4 (r=4.0mm) N2 gas blow CNx/CNx with N2 Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s Gas blow rate : 2.10 cc/mm2s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Hv(CNx) : 28.8GPa

Friction coefficient μ

0.5

0.4

0.3

0.2

0.1

0 0

2000

4000

6000

Number of cycles N, cycles

8000

10000

C-coated Si3N4 ball

Sliding direction of counterface

100 μm

C-coated Si3N4 disk

Sliding direction of disk

100 μm

After sliding of 10000 cycles with N2 gas blow in air

CNx coated Si3N4 ball Sliding direction of counterface

100 μm CNx coated Si3N4 disk

Sliding direction of disk

100 μm

After sliding of 10000 cycles with N2 gas blow in air

CNx-coated Si3N4 ball

C-coated Si3N4 ball Hv = 33 GPa

Hv = 28 GPa

Sliding direction of counterface

100 μm

C/C 6.42x10-7 mm3/Nm

After CNx / CNx 10000 cycles 9.31x10-9 mm3/Nm

Effect of Gases of N2, Ar, CO2 and Air on friction and wear of CNx / CNx

N2

CNx Si3N4 Si3N4

CNx

Ar

O2

CO2

Air

0.6 Disk : CNx(Rmax =0.025mm) on Si3N4 (t=400nm) Ball : CNx coated Si3N4 (r=4.0mm) Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s

Friction coefficient μ

0.5

0.4

N2 gas blow O2 gas blow Ar gas blow CO2 blow Air

2

Gas blow rate : 2.10 cc/mm s Gas blow distance : 10mm Hv(CNx) : 28.8GPa

0.3

0.2

0.1

0 0

2000

4000

6000

Number of cycles N, cycles

8000

10000

(a) N2 blow

(b) Argon blow

(d) O2 blow

(c) CO2 blow

(e) Air (No blow) Sliding direction of counterface

After 10 000 cycles

Sliding direction of disk

100μm

0.4

6

5 4.5

Disk : CNx(Ra=0.025mm) on Si3N4 (t=400nm) Ball : CNx coated Si3N4 (r=4.0mm) Hv(CNx) : 28.8GPa, Load : 400mN Maximum contact pressure : 517MPa Sliding speed : 0.2 m/s

0.35

0.3

2

4 3.5 3 2.5

Gas blow rate : 2.10 cc/mm s Gas blow distance : 10mm Gas blow start cycle : 100 cycles Air : 20℃,RH=30%

0.25

0.2

Specific wear rate Ws

μ Stable friction coefficient μ 0.15

2

0.1

1.5 1

0.05 0.5

0

0 blow NN2 2 blow

Ar blow

CO2 blow

Blow gas

O2 blow

Air (No blow)

Friction coefficient

Specific wear rate of ball Ws. x10-7 mm3/Nm

5.5

Surface analysis

CNx Evaporation speed 20Å /s O2 gas blow

Intensity, counts

In itial We ar tr ac k

D-band G-band

800

1000

1200

1400

1600

Raman shift, cm-1

1800

2000

CNx on Si3N4 disk after 10000 sliding cycles in blows of Nitrogen , Oxygen, and in air. W = 400 mN, V = 0.2 m/s

Initial surface

In Oxygen blow

In Nitrogen blow

In Air

Raman spectra of initial surface and wear track of CNx

1200

1400

1600

Raman shift, cm

1800

2000

800

1400

1600

1800

800

2000

G-band

1400

1600

Raman shift, cm-1

N2 gas blow

1800

2000

1000

1200

1200

1400

1600

Raman shift, cm

1800

2000

-1

CNx coated Si3N4 ball Evaporation speed 20Å /s No blow

D-band

800

1000

-1

Initial Wear track

Intensity, counts

Intensity, counts

Ball

D-band

1200

1200

D-band G-band

CNx coated Si3N4 ball Evaporation speed 20Å /s O2 gas blow

Initial Wear track

1000

1000

Raman shift, cm

CNx coated Si3N4 ball Evaporation speed 20Å /s N2 gas blow

800

Intensity, counts

D-band G-band

-1

Initial Wear track

G-band

1400

Initial Wear track

Intensity, counts

1000

Initial Wear track

Intensity, counts

D-band G-band

800

CNx Evaporation speed 20Å /s No blow

CNx Evaporation speed 20Å /s O2 gas blow

Initial Wear track

Intensity, counts

Disk

CNx Evaporation speed 20Å /s N2 gas blow

1600

Raman shift, cm-1

O2 gas blow

1800

2000

D-band

800

1000

1200

G-band

1400

1600

Raman shift, cm-1

In Air

1800

2000

N2 gas blow

O2 gas blow

Sliding direction of counterface

100μm

CNx coated Si3N4 ball Evaporation speed 20Å /s N2 gas blow

CNx coated Si3N4 ball Evaporation speed 20Å /s O2 gas blow

D-band

800

1000

1200

G-band

1400

Initial Wear track

Intensity, counts

Intensity, counts

Initial Wear track

1600

Raman shift, cm-1

1800

2000

D-band

800

1000

Initial surface Wear track

1200

G-band

1400

Raman shift, cm

1600 -1

1800

2000

XPS analysis of the initial surface and wear track after 10000 cycles Concentrationofofbonds bonds of of C C-atoms in Concentration atom on C andCNx CNxcoating, coating % C, %

100% 90% 80% 70% 60% 50% 40%

C-N C-N or or C-O C-O C=N C=N C=C C=C or or C-C C-C

30% 20% 10% 0%

Initial surface

Wear track

Wear track

Wear track

N2 blow

O2 blow

In air

Concentration of of bonds bonds of of NN-atoms Concentration atom onin C andCNx CNxcoating, coating% C, %

XPS analysis of the initial surface and wear track after 10000 cycles 100% 90% 80% 70% 60% 50% 40% 30%

N-O N-O N=C N=C N-N N-N or or N=N N=N N-C N-C

20% 10% 0%

Initial surface

Wear track

Wear track

Wear track

N2 blow

O2 blow

In air

In N2 blow

Conclusions

μ

Ws, mm3/N.m

1. The combination of CNx/CNx gives lower value of the friction coefficient and wear rate, than the combination of CNx/Si3N4 and C/C in the blow of N2 gas in open air.

CNx/CNx

0.03

1~3 x10-8

CNx/Si3N4

0.03

5.9 x10-8

C/C

6.4 x10-7 0.05 ~0.15 CNx/CNx

2. For the contact of CNx coating against CNx coating N2 gas blow in open air, gives lowest friction coefficient and wear rate among the gases N2, Ar, CO2, O2 and lower than in open air.

Blown gas

μ

Ws, mm3/N.m

N2

0.03

3.0 x10-8

Ar

0.05

4.0 x10-8

CO2

0.05

5.2 x10-8

O2

0.17

5.4 x10-7

Air

0.19

3.5 x10-7