Fusion of Multistatic Synthetic Aperture Radar Data to obtain a

Jul 19, 2009 - Bayesian estimation approach. ▻ Proposed method of joint data fusion and super-resolution reconstruction. ▻ Simulation and experimental ...
7MB taille 0 téléchargements 273 vues
. Fusion of Multistatic Synthetic Aperture Radar Data to obtain a Superresolution Image Ali Mohammad-Djafari1 , Sha Zhu1 , Franck Daout1 and Philippe Fargette3 1 Laboratoire des Signaux et Syst` emes (UMR 8506 CNRS - SUPELEC - Univ Paris Sud 11) Sup´ elec, Plateau de Moulon, 91192 Gif-sur-Yvette, FRANCE. {djafari,zhu}@lss.supelec.fr 2

SATIE, ENS Cachan, Universit´ e Paris 10, France [email protected] 3

DEMR, ONERA, Palaiseau, France [email protected]

WIO 2009, 19-24 July, 2009, Paris, France 1 / 28

Summary ◮

Introduction to SAR imaging



Monostatic, Bistatic and Multistatic SAR imaging



Forward modeling as a Fourier Synthesis inverse problem



Classical inversion methods ◮ ◮ ◮

Inverse Fourier Transform Gerchberg-Papoulis Least square and deterministic regularization



Bayesian estimation approach



Proposed method of joint data fusion and super-resolution reconstruction



Simulation and experimental data results



Conclusions and Discussions 2 / 28

Synthetic Aperture Radar (SAR) imaging ◮

Point sources: s(t) =

XX m



Continuous case: s(t) =



f (m, n) p(t − τm,n )

n

ZZ

f (x, y) p(t − τ (x, y)) dx dy

SAR imaging with a set of transmitter/receivers along the axis u: ZZ s(t, u) = f (x, y) p(t − τ (x, y, u)) dx dy k=



kx ky



=

s(ω, u, θ(u)) = P (ω)



ZZ

k cos(θ) k sin(θ)



|k| = k = ω/c

f (x, y) exp {−jωτ (x, y, θ(u))} dx dy 3 / 28

Monostatic, Bistatic and Multstatic cases Mono-static case (same transmitter-receivers) ZZ s(t, u(θ)) = f (x, y) p(t − τ (x, y, u(θ))) dx dy

2p 2 2 x + (y − u)2 = (kx x + ky (y − u)) c ω

τ (x, y, u(θ)) =

S(u,v)

−70 −65 −60 −55

kx = k cos(θ) ky = k sin(θ)

−50

v (rad/m)



−45 −40 −35 −30 −25 −20 15

20

25

30

35 40 u (rad/m)

s(ω, u, θ(u)) = P (ω) = P (ω)

45

50

ZZ

ZZ

55

f (x, y) exp {−jωτ (x, y, θ(u))} dx dy f (x, y) exp {−j(kx x + ky y)} dx dy 4 / 28

Bistatic and Multstatic cases ◮

Bistatic case (one transmitter, many receivers)



Multistatic case (one transmitter, many receivers) ZZ s(t, u) = f (x, y) p(t − τtc (x, y) − τrc (x, y, u(θ))) dx dy τtc + τcr =

2 (kx x + ky (y − u)) ω

S(u,v) −70

−60

−50

kx = k (cos(θtc ) + cos(θcr ) ky = k (sin(θtc ) + sin(θcr )

v (rad/m)

−40

−30

−20

−10

0

10 10

15

20

25

30 35 u (rad/m)

40

45

50

s(ω, u, θ(u)) = P (ω)

55

ZZ

f (x, y) exp {−j(kx x + ky y)} dx dy 5 / 28

Monostatic, Bistatic and Multstatic cases s(ω, u, θ(u)) = P (ω)

ZZ

f (x, y) exp {−j(kx x + ky y)} dx dy S(u,v)

−70 −65

3 −60

2

−55 −50

0

v (rad/m)

1

Tx

5

−45 −40

4 3

−35

2 −30

1 0 5

−1

−25

4 −2

3

−20

2

−3 −4

1 0

15

20

25

30

35 40 u (rad/m)

45

50

55

Results on experimental data (2 bands fusion) Reconstruction by backpropagation

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2

0

y (m)

−0.6

0.2

0

0.2

0.4

BF1 band

0.4

0.6 −0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

0.6 −0.6

−0.4

−0.2

0.2

0.4

0.6

−0.6

−0.6

−0.4

−0.4

−0.2

−0.2

−0.2

0

y (m)

−0.6

−0.4

0

0.2

0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.6

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2

y (m)

−0.6

y (m)

−0.6

0

0.2

−0.4

−0.2

0 x (m)

−0.2

0.2

0.4

0.6

0 x (m)

0.2

0.4

0.6

0.2

0.4

0.6

0

0.4

0.6 −0.6

−0.4

0.2

0.4

0.6

0.6

fh(x,y)

−0.6

0.4

0.4

0

fh(x,y)

0.2

0.2

0.6 −0.6

fh(x,y)

0

0 x (m)

0.4

0.6 −0.4

−0.2

0.2

0.4

0.6 −0.6

−0.4

fh(x,y)

−0.6

0.2

y (m)

0 x (m)

fh(x,y)

y (m)

y (m)

fh(x,y)

BF1 & BF2

0

0.2

0.4

0.6

BF2 band

Reconstruction by backpropagation

−0.6

y (m)

y (m)

Reconstruction by backpropagation −0.6

0.6 −0.6

−0.4

−0.2

0 x (m)

0.2

0.4

0.6

−0.6

−0.4

−0.2

0 x (m)

27 / 28

Conclusions and Perspectives



Bayesian estimation framework is an appropriate one for handeling inverse problems and in particular Fusion and inversion of SAR imaging data



Proposed method shows good results both on simulated and experimental data



For experimental data, we still need to account for polarisation information



Present forward modeling assumes a scene with point sources



More accurate forward models are needed for accounting for real sources

28 / 28