growth law Growth law

a) Growth by agglomeration and carbonaceous clusters deposition : growth rate ~ 13 nm/min2. b) Growth by clusters deposition : growth rate ~ 2,3 nm/min.
613KB taille 4 téléchargements 645 vues
PIIM, UMR 6633 CNRS - Aix-Marseille Université

GROWTH OF CARBONACEOUS NANOPARTICLES IN A GLOW DISCHARGE A. Mouberi1, C. Arnas1, X. Bonnin2 UMR 6633 CNRS- Aix Marseille Université, 13331 Marseille, France 2 LIMHP, UPR 1311 CNRS, Université Paris 13 - Institut Galilée, 93430 Villetaneuse, France 1 LPIIM,

Object: To understand the growth mechanisms of carbonaceous nanoparticles in plasma from graphite target sputtering

Experimental setup 1

Formation mechanism of carbonaceous nanoparticles

Par= 0.6 mbar - Cathode sputtering by Ar+ ions and fast charge-exchange Ar atoms.

ID= 80 mA (constant)

- Carbon cathode sputtering : C, C2, C3 injection, sputtering threshold ~70 eV 1.

VD= - 600 V 6

- Thermalization with gas atoms : d = 6 mm from cathode with Tg ~ 100 °C

• Optical spectroscopy

- Condensation : formation of Cn clusters.

• Laser extinction and

- Coagulation : formation of solid particles of nanometric size by cluster collisions

4

2

diffusion

5

3 1- Thermocouple

4- Glass tube

Vacuum pump

5- Nanoparticules collector 6- Graphite cathode

Description of agglomeration Two successive agglomeration processes: 1) Agglomeration of nuclei of 2-3 nm size which leads to the formation of nanoparticles of 8 -15 nm . 2)These later also agglomerate to form bigger particles. Charge fluctuations SEM Image @ 180 s 8 nm 1)

2)

48 nm

0.4 Charge (e)

Charge distribution (a.u.)

3- Anode

1

Charging mechanism

Np/Ni = 0.01 Te = 3eV, Tg = Ti = 400 K

0.2 0 50 Siz

40 e (n

30 m)

20

10

0 -60 -50

-40

-10 -30 -20

0

e) r ge ( Cha

50 40 30 20 10 0 0.1 0.08 Ra 0.06 tio N / 0.040.02 p N

0

50 60 30 40 10 20ize (nm) S

0

0.02 0 0.1 R0.08 ati0.06 o N 0.04 p /N 0.02

b)

0.25

0.4

Size frequency (a.u.)

Size frequency (a.u.)

Size (nm)

0.04

50 30 40

10 20

m)

Size histograms 1s 30 s 90 s

0.5

0.2

0.1

0.05

0.1 0 0

180 s 540s

0.2

0.15

0.3

a)

10

20

30

40

50

Size (nm)

60

70

0 0

80

10 20 30 40 50 60 70 80 90 100

Size (nm)

a) Growth by agglomeration and carbonaceous clusters deposition : growth rate ~ 13 nm/min2. b) Growth by clusters deposition : growth rate ~ 2,3 nm/min. - Size histograms are fitted by log normal distributions

Discharge duration (s)

Characteristics of discharge

b) Optical spectroscopy

10

2V0/dc

10

NG 4) 3)

FDS

PC

e-

VD Ratio

Ar+

800,6 nm/763,5nm 2) C2 516,5 nm dc / NG : Negative glow / FDS : Faraday dark space / PC : Positive column S : Sheath 3 1)Trapped electrons , 2) Electric field reversal : electric field is confining charging of nanoparticles , 3) Ions acceleration, 4) Electron acceleration .

Prospects Determination of plasma parameters, localization of nanoparticles in discharge, to improve calculation of charge mechanism by regarding the charge and size as discrete variables.

6 0

10

8

6

15

20

growth law 0

4

10

15

20

4 2 0

2

ID = 80 mA, PAr = 0,6 mbar 100

200

300

400

500

600

0 -3

100

3 x 10

200 3

x 10

-3

300

400

500

600

2.5

2.5

Intensity (ua)

- Modification of lines intensity emitted by plasma : modification of plasma parameters + important injection of carbon in plasma during ~1s Formation of primary particles. -Increase in intensity of lines Reduction of line trapping by the plasma Reduction in the lifespan of level Overpopulation of level 3p54s Emission of radiation by transfer excitation4. - Absorption of radiation by nanoparticles . Competition between absorption by nanoparticles and emission by radiation trapping.

ID = 10 mA, PAr = 1 mbar

5

8

2

0.1

0.1

1.5

2 0.05

1

1.5

0.05 0 12

0

100

200

Voltage (V)

Ar*r 800,6 nm

5

Voltage (V)

Intensity (ua)

1)

8

10

Ar*m 763,5 nm

S

V ,E

0.06

(n i 0 0 Size - Charge distribution equation : - The first four terms represent the rate of change due to the acquisition or the loss of a unit elementary charge and size. The term Pq represents the production rate of charge q particles and the last term accounts for other losses. - Model: charge and size are treated like continuous variables to facilitate calculations5. - The small particles (1-5 nm) have a given probability to be positively charged whereas the largest ones have always a negative charge the agglomeration mechanism by Coulomb attraction. - When dust reaches a critical diameter, its charge becomes negative and it collects less electrons : charge saturation. However, when Np/Ni~ 0, the charge evolves linearly dust explosion. - Charges of small dust fluctuate quickly: small dust is the source of agglomeration. The load of large dust does not fluctuate. i

Growth law

a) Region of glow discharge

Charge time fluctuation (s)

2- Langmuir probe

14

300

16

18

400

Discharge duration (s)

20

500

10

15

20

1

600

0

100

200

300

400

500

Discharge duration (s)

References: [1] C. Dominique and C. Arnas, J. Appl. Phys. 101, 123304 (2007) [2] C. Arnas, A. Mouberi, K. Hassouni, A. Michau, G. Lombardi, X. Bonnin, F. Bénédic and B. Pégourié, J. Nucl. Mater. 390-391, 140 (2009) [3] V. I. Kolobov and L. D. Tsendin, Phys. Rev. A 46 7837 (1992) [4] Methods of experimental physics, volume 7 part A: Atomic and electron physics (1968) [5] B. F. Gordiet and M. Ferreira, J. Appl. Phys. 84, 1231 (1998)

600