Guido Pintacuda - GERM

Mar 23, 2013 - frontier metal 3d orbitals ... If the electron orbital magnetic moment contribution is considered, the total magnetic moment and hence the ...
23MB taille 3 téléchargements 298 vues
Paramagnetic liquid- and solid-state NMR

Guido Pintacuda Centre de RMN à Très Hauts Champs de Lyon Université de Lyon (France)

GERM NMR School - Cargese (Corsica) 16-23 March 2013

The periodic table ... a lot of paramagnetic ions

Diamagnetic and paramagnetic NMR

ZnII

FeII

Diamagnetic and paramagnetic NMR

ZnII

FeII

Diamagnetic and paramagnetic NMR

ZnII

FeII

Diamagnetic and paramagnetic NMR

ZnII

FeII

 



I. Paramagnetic shift

Coupled nuclear spins I=1/2 |

H = ⌦01 Iˆ1z + ⌦01 Iˆ1z + 2⇡J Iˆ1z Iˆ2z |

i

| i

⌦01 | ↵i

|↵i

no field, no coupling

Zeeman splitting of spin I1

⌦02

|↵↵i

⇡J

⌦02

⇡J + 2

⌦02

| ↵i

|↵ i Zeeman splitting of spin I2

i

|↵ i ⇡J 2

⌦01 |↵↵i

J-coupling

⌦02

⌦01

⇡J

⌦01

⇡J + 2



⇡J 2

NMR and EPR signals EPR

= 1.76 x 1011 rad s-1 T -1

NMR

(rad s-1 T -1) 1H 2H 13C 15N 31P

2.67 x 108 4.11 x 107 6.72 x 107 -2.71 x 107 1.08 x 108

263 GHz of electron Larmor frequency 400 MHz of 1H Larmor frequency

Coupled nuclear and electron spins I=S=1/2

H=

0ˆ ⌦I Iz

|↵ i |↵i

| i no field, no coupling

Zeeman splitting of spin S

|↵ i

|↵↵i

|

i

|

i

⌦0I

A + 2

| ↵i Zeeman splitting of spin I

⌦0S ⌦0I

⌦0I

A 2

A + 2

| ↵i

A + 2

⌦0S

⌦0S ⌦

A 2 |↵↵i

A

EPR

A + 2

⌦0I

⌦0S

hyperfine coupling

A

+ AIˆz Sˆz

A 2

⌦0S

NMR

⌦0I

0 ˆ ⌦ S Sz

A 2



Nuclear and electron relaxation times methyl protons of ethylbenzene Amide protons in proteins of 10 kDa in CDCl3 carboxyl carbon (~0.5s) CH protons in triolein 2 (10s) of glycines (0.7s) CH2 protons in proteins (44s) water protons of 10 kDa (~0.3s) (3s) 81

27

9

3

1

0.3

0.1

T1 (s)

T1e NO˙ (1/2)

Mn2+ Cu2+ (5/2) Gd3+ (1/2) (7/2)

Fe3+ (5/2)

10-7

10-8

10-10

10-9

T1e (s)

Ru3+ Fe2+ (5/2) Fe3+ Ln3+ (2) (1/2) (1/2-15/2)

10-11

10-12

10-13

Bertini and Luchinat, Coord. Chem. Rev. (1996)

Coupled nuclear and electron spins I=S=1/2 |↵ i |↵i

| i no field, no coupling

Zeeman splitting of spin S

|↵ i

|↵↵i

|

|

i

⌦0I

A + 2

| ↵i Zeeman splitting of spin I

A

⌦0S ⌦0I

⌦0I

A 2

A + 2

| ↵i

A + 2

⌦0S

⌦0S ⌦

A 2 |↵↵i

A

EPR

A + 2

⌦0S

hyperfine coupling

NMR

⌦0I

A 2

⌦0S

i

⌦0I

A 2



Coupled nuclear and electron spins I=S=1/2 |↵ i |↵i

| i no field, no coupling

Zeeman splitting of spin S

|↵ i

|↵↵i

|

|

i

⌦0I

A + 2

| ↵i Zeeman splitting of spin I

⌦0S ⌦0I

⌦0I

A 2

A + 2

| ↵i

A + 2

⌦0S

⌦0S ⌦

A 2 |↵↵i

A

EPR

A + 2

⌦0S

hyperfine coupling

NMR

⌦0I

A 2

⌦0S

i

⌦0I

A 2



Curie spin hSz i µS =

ES,MS =

e hSz i

= B0 ⇢ X ES,MS MS exp kB T MS ⇢ hSz i = X ES,MS exp kB T hSz i =

MS

+1/2 1/2 3/2

hS, MS |Sz |S, MS i exp X MS

for

exp



MS +3/2

E

MS

X

g e µ B B 0 MS



ES,MS kB T

ES,MS kB T hSz i =

g e µB B0 S(S + 1) 3kT

B0

Fermi contact shift |↵ i |↵i

| i no field, no coupling

Zeeman splitting of spin S

|↵ i

|↵↵i

|

| ↵i Zeeman splitting of spin I

hyperfine coupling

NMR

⌦0I

A + 2

⌦0I

⌦0I

A 2

⌦0S

i

A 2



⌦0I

|

i

⌦0I

A + 2

⌦0S | ↵i

A 2 |↵↵i A + 2

Fermi contact shift |↵ i |↵i

| i no field, no coupling

Zeeman splitting of spin S

|↵ i

|↵↵i

|

| ↵i Zeeman splitting of spin I

hyperfine coupling

NMR

⌦0I

A + 2

⌦0I

⌦0I

A 2

⌦0S

i

A 2



⌦0I

|

i

⌦0I

A + 2

⌦0S | ↵i

A 2 |↵↵i A + 2

Classical description: magnetic susceptibility magnetization per unit volume for NA particles molar susceptibility

volume susceptibility average magnetic moment per particle

Classical description: magnetic susceptibility volume susceptibility

magnetization per unit volume

average magnetic moment per particle

for NA particles molar susceptibility

hµi =

µB ge hSz i M

=

hSz i =

2 2 S(S µ 0 NA µ B g e

g e µB B0 S(S + 1) 3kT

+ 1) 3kT

Classical description: magnetic susceptibility volume susceptibility

magnetization per unit volume

average magnetic moment per particle

for NA particles molar susceptibility

hµi =

µB ge hSz i M

=

hSz i =

2 2 S(S µ 0 NA µ B g e

g e µB B0 S(S + 1) 3kT

+ 1) 3kT

Paramagnetism and NMR Unpaired electron spins - Hyperfine Hamiltonian

N

Spin-delocalization on the nucleus

N

Long-range dipolar interaction

 



Fermi contact shift

frontier metal 3d orbitals

Fermi contact shift

frontier metal 3d orbitals

Fermi contact shift

ZnII

FeII

Fermi contact shift

ZnII

FeII

Fermi contact shift

ZnII

FeII

Fermi contact shift

H5/7

H10/14

H11/13

H2

H9

H6

Fermi contact shift

H5/7

H10/14

H11/13

H2

H9

H6

Fermi contact shift

iron-sulfur proteins

unpaired electron spin density on cysteine 1Hbeta nuclei is a function of the ligand orientation

Fe

H S

C

Bertini, Capozzi, Luchinat, Piccioli, Vila, J. Am. Chem. Soc., 1994

Fermi contact shift

Methyl protons in histidine cytochromes (Low spin Fe(III))

unpaired electron spin density on heme nuclei is a function of axial ligand orientation

I. Bertini, C. Luchinat, G. Parigi, F.A. Walker, JBIC 1999

Paramagnetism and NMR Unpaired electron spins - Hyperfine Hamiltonian

N

Spin-delocalization on the nucleus

N

Long-range dipolar interaction

 



Electron-nucleus dipolar coupling Magnetic susceptibility

the dipolar coupling with the average Curie spin results in an axial traceless shielding tensor DSA

r

Hyperfine dipolar shift

dipolar interaction

dipolar shift anisotropy 1

r3 ⇤iso ⇥= 2 r3

(a)

Anisotropic magnetic susceptibility If the electron orbital magnetic moment contribution is considered, the total magnetic moment and hence the magnetic susceptibility becomes anisotropic. In systems that are orbitally non-degenerate, the anisotropy can be adequately represented by an anisotropy of the g factor. A g tensor is thus introduced, with values gkk for any direction kk of the magnetic field, so that:

the induced moment, and thus the susceptibility, becomes a rank-2 tensor:

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless any more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless any more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless any more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless ay more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless ay more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless ay more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless ay more !

Electron-nucleus dipolar coupling pseudocontact shift

the paramagnetic dipolar shielding tensor is not traceless ay more !

Electron-nucleus dipolar coupling pseudocontact shift

pc

1 = 12⇤r3

r

⌅ax (3 cos ⇥ 2

3 1) + ⌅rh sin2 ⇥ cos 2⇧ 2



Electron-nucleus dipolar coupling pseudocontact shift pc

1 = 12⇤r3

⌅ax (3 cos ⇥ 2

axial

r

3 1) + ⌅rh sin2 ⇥ cos 2⇧ 2



totally rhombic

Pseudocontact shifts Paramagnetic metals - d transition

Pseudocontact shifts Paramagnetic metals - f transition

Electron-nucleus dipolar coupling pseudocontact shift

Yb-DOTA

Electron-nucleus dipolar coupling pseudocontact shift

Yb-DOTA

Electron-nucleus dipolar coupling

Dy-ℇ

pseudocontact shift pc

1 = 12⇤r3

⌅ax (3 cos ⇥ 2

3 1) + ⌅rh sin2 ⇥ cos 2⇧ 2

⇥ r

15N-

ε

Dy3+

15N-

ε

Dy3+

15N-Leu

ε

Dy3+

PCS for structural refinement

Solution structure of M80A cytochrome c-CN

NOE only

NOE + 280 pcs values

Banci, Bertini, Bren, Cremonini, Gray, Luchinat, Turano JBIC 1, 117 (1996)

Hyperfine dipolar shift

dipolar interaction

dipolar shift anisotropy 1

r3 ⇤iso ⇥= 2 r3

(a)

Hyperfine dipolar coupling pseudocontact shift B0

Magic Angle Spinning (MAS)

54.7

(a) 1)

(b)

pc

=

1 12⇤r3

⌅ax (3 cos2 ⇥

1) +

3 ⌅rh sin2 ⇥ cos 2⇧ 2



Paramagnetic solids: large offsets and large shift anisotropies (SAs)

O i

Pr

N i

Cl Pr

O

N

Fe Fe

Cl i Pr

O

N

i

Pr

O O

Yb Yb

3-­ 3Na+

O O

N

O

O O

N

Tb Tb

rsion

400

200 0 S=2

O

N O O

O

J=5/2 200 0

-­  

200 D(1H)/ppm

O O

N

O O O

O

N O O

3-­ 3Cs+

-­  

200 D(1H)/ppm

O

O

J=15/2 600 400

800

100

100

100

80

80

80

200

0

-­200

D(1H)/ppm

-­400



PCS for structural refinement ZnII-SOD CoII-SOD

Co(II)

2 mg, 1-2 h

Knight, Felli, Gonnelli, Pierattelli, Bertini, Emsley, Herrmann and Pintacuda, J. Am. Chem. Soc. 2012, 134, 14730.

Ultra-fast MAS, 1H detection and pseudocontact shifts

257 non-trivial 1H-1H distances 260 dihedral angle restraints

without PCSs RMSD to mean 2.90 Å

with PCSs RMSD to mean 1.70 Å

445 CoII PCS (111 1H, 223 13C, 111 15N)

Knight, Felli, Gonnelli, Pierattelli, Bertini, Emsley, Herrmann and Pintacuda, J. Am. Chem. Soc. 2012, 134, 14730.

Ultra-fast MAS, 1H detection and pseudocontact shifts

257 non-trivial 1H-1H distances 260 dihedral angle restraints

without PCSs RMSD to mean 2.90 Å

a

Fitted PCS (ppm)

0

H CA CO 0 Observed PCS (ppm)

b

Fitted PCS (ppm)

0

445 CoII PCS (111 1H, 223 13C, 111 15N)

Knight, Felli, Gonnelli, Pierattelli, Bertini, Emsley, Herrmann and Pintacuda, J. Am. Chem. Soc. 2012, 134, 14730.

with PCSs RMSD to mean 1.70 Å

Ultra-fast MAS, 1H detection and pseudocontact shifts

257 non-trivial 1H-1H distances 260 dihedral angle restraints

without PCSs RMSD to mean 2.90 Å

a

Fitted PCS (ppm)

0

H CA CO 0 Observed PCS (ppm)

b

Fitted PCS (ppm)

0

445 CoII PCS (111 1H, 223 13C, 111 15N)

Knight, Felli, Gonnelli, Pierattelli, Bertini, Emsley, Herrmann and Pintacuda, J. Am. Chem. Soc. 2012, 134, 14730.

with PCSs RMSD to mean 1.70 Å

Why NMR of Paramagnetic Proteins? Many proteins binds paramagnetic metals (cytochrome c, ferritin, Cu-binding proteins, Mn-binding proteins…)

Paramagnetic metals can be introduced in metalloproteins by replacing diamagnetic metals

(Ca2+ binding proteins, Zn2+-binding proteins,…)

Paramagnetic metals can be introduced in any protein using suitably designed paramagnetic tags

(Schwalbe, Imperiali, Ubbink, Otting, Griesinger,…)

Paramagnetic labelling Introduction of a paramagnetic metal ion into a protein

Su and Otting, J. Biomol. NMR, 2010

Pseudocontact shifts Paramagnetic metals - f transition

Protein-protein interactions pseudocontact shift θ 15N-

ε

Dy3+

15N-

θ ε Dy3+

Protein-protein interactions pseudocontact shift θ 15N-

ε

Dy3+

15N-

θ ε Dy3+

Protein-protein interactions pseudocontact shift θ 15N-

ε

Dy3+

15N-

θ ε Dy3+

Protein-protein interactions pseudocontact shift θ 15N-

ε

Dy3+

15N-

θ ε Dy3+

Protein-protein interactions pseudocontact shift θ 15N-

ε

Dy3+

15N-

θ ε Dy3+

Protein-protein interactions pseudocontact shift

G. Pintacuda, M. A. Keniry, T. Huber, A.-Y. Park, N. E. Dixon and G. Otting J. Am. Chem. Soc., 2004, 126, 2963-2970. G. Pintacuda, M. A. Keniry, E. Owen, A.-Y. Park, N. E. Dixon and G. Otting J. Am. Chem. Soc., 2006, 128, 3696-3702. M. A. Keniry, A.-Y. Park, E. A. Owen, S. M. Hamdan, G. Pintacuda, G. Otting and N. E. Dixon J. Bacteriol., 2006, 188, 4464-4473.

II. Paramagnetic relaxation enhancement

Paramagnetic relaxation enhancement Solomon mechanism

N

N

Paramagnetic relaxation enhancement Solomon mechanism

N

N

Paramagnetic relaxation enhancement Solomon mechanism

N

N

spatial part interaction constant x Wigner matrices

spin part rank-2 irreducible spin tensor operators

Paramagnetic relaxation enhancement Solomon mechanism

N

N

spatial part interaction constant x Wigner matrices

spin part rank-2 irreducible spin tensor operators

correlation function

how much of the spatial part of the interaction tensor changes during .

Paramagnetic relaxation enhancement Solomon mechanism

N

correlation function

N

how much of the spatial part of the interaction tensor changes during .

Paramagnetic relaxation enhancement Solomon mechanism

Paramagnetic relaxation enhancement Solomon mechanism

spectral density function

how much of magnetic noise is available at the required frequencies

Paramagnetic relaxation enhancement Solomon mechanism

|↵ i |↵↵i |

i

| ↵i

Paramagnetic relaxation enhancement Solomon mechanism

R1 and R2 enhancements for different paramagnetic centers

Ru3+ Ln3+ Fe3+ (5/2) Fe2+ (1/2-15/2) (1/2) (2)

10-13

10-12

10-11

Fe3+ (5/2)

10-10

Mn2+ Cu2+ (1/2) Gd3+ (5/2) (7/2)

NO˙ (1/2)

10-9

10-7

10-8

Bertini and Luchinat, Coord. Chem. Rev. (1996)

R1 and R2 enhancements for different paramagnetic centers 107

S=1/2

105 103 101 10-1 13 12 11 10

Ru3+ Ln3+ Fe3+ (5/2) Fe2+ (1/2-15/2) (1/2) (2)

10-13

10-12

10-11

9

Fe3+ (5/2)

10-10

8

7

Mn2+ Cu2+ (1/2) Gd3+ (5/2) (7/2)

NO˙ (1/2)

10-9

10-7

10-8

Bertini and Luchinat, Coord. Chem. Rev. (1996)

Paramagnetic relaxation enhancement Bloembergen mechanism

contact coupling between nuclear and electron spins

|↵ i |↵↵i |

i

| ↵i

Reduced vs oxidized Cu-SOD Cu(II)/Cu(I) Zn(II)

Cu(I),Zn-SOD S=0

Cu(II),Zn-SOD S=1/2

Site-specific 15N T1s A

ϕ1

H

1

x CP y

y x

CP

N

15

Giraud et al. JACS 2005, 127, 18190

ϕ2 τrelax

slTPPM

x

t1

ϕ3

τsat

Cu(I)-SOD S=0

CP

Cu(II)-SOD S=1/2

ϕ4 CP WALTZ-16

x C

13

WALTZ-16

B

ϕ1

H

1

y

x CP

slTPPM

y N

15

CP

ϕ3

x

τspinlock

t1

τsat

CP

ϕ4 CP WALTZ-16

x C

13

C 1

ϕ5

136y (CuI)+116

WALTZ-16

(CuII)

ϕ4

relaxation rates - 2x2.5 days of experimental time!

Site-specific

C

ϕ5

H

1

13CO

slTPPM

x

y 15

CP

C

13

D

ϕ1

H

1

x CP y

N

15

ϕ6

y

x

T1s at ultra-fast MAS ϕ4

y CP

N

Lewandowski et al. JACS 2010, 132, 8252

CP

τrelax

CP

t1

ϕ3

Cu(I)-SOD S=0

CP

Cu(II)-SOD S=1/2

y

τsat CP WALTZ-16

x

x CP

WALTZ-16

y slTPPM

ϕ3

x

t1

τsat

CP

ϕ4 CP WALTZ-16

x C

13

WALTZ-16

136 (CuI)+116 (CuII) relaxation rates - 2x3.5 days of experimental time!

Oxidized vs reduced Cu-SOD Paramagnetic relaxation enhancements Jaroniec et al. JACS 2008, JACS 2009

PRE

R1

=k

(

e N ~)

2

S(S + 1)

6 reN

⇥e 1 + (⇤N ⇥e )2

Paramagnetic relaxation enhancements Long-range structural constraints

without PREs

RMSD to mean 2.9 Å

with PREs

RMSD to mean 1.6 Å

Knight, Pell, Bertini, Felli, Gonnelli, Pierattelli, Herrmann, Emsley and Pintacuda, Proc. Natl. Acad. Sci. USA 2012, 109, 28,11095-11100.

Paramagnetic relaxation enhancement Curie mechanism

dipolar coupling between nuclear and average Curie spin r

|↵ i |↵↵i |

i

| ↵i

Paramagnetic relaxation enhancement Curie mechanism

R1 and R2 enhancements for different paramagnetic centers 107

S=1/2

105 103 101 10-1 13 12 11 10

Ru3+ Ln3+ Fe3+ (5/2) Fe2+ (1/2-15/2) (1/2) (2)

10-13

10-12

10-11

Fe3+ (5/2)

10-10

9

8

7

Mn2+ Cu2+ (1/2) Gd3+ (5/2) (7/2)

NO˙ (1/2)

10-9

10-7

10-8

Bertini and Luchinat, Coord. Chem. Rev. (1996)

Paramagnetic relaxation enhancement Curie mechanism

R1 and R2 enhancements for different paramagnetic centers 105

Dy3+

Cu2+

NO˙

103 101 10-1 10-3 = 5·10-13 13

12

11

= 3·10-9

J=15/2 10

9

8

7

13

Ru3+ Ln3+ Fe3+ (5/2) Fe2+ (1/2-15/2) (1/2) (2)

10-13

10-12

10-11

12

11

10

Fe3+ (5/2)

10-10

~ 10-7

S=1/2 9

8

7

13

12

11

S=1/2 10

9

Mn2+ Cu2+ (1/2) Gd3+ (5/2) (7/2)

NO˙ (1/2)

10-9

10-7

10-8

8

7

Bertini and Luchinat, Coord. Chem. Rev. (1996)

Paramagnetism and NMR Fast and slow-relaxing paramagnetic metals - d transition

Paramagnetism and NMR Fast and slow-relaxing paramagnetic metals - f transition

Slow and fast relaxing metal ions Cu(II)/Cu(I)

Zn(II)

Slow and fast relaxing metal ions Co(II)

Ultra-fast MAS, 1H detection and paramagnetic effects

Knight, Felli, Pierattelli, Emsley and Pintacuda, Acc. Chem. Res.. 2013, in press.

Ultra-fast MAS, 1H detection and paramagnetic effects

with PREs

with PCSs

Knight, Felli, Pierattelli, Emsley and Pintacuda, Acc. Chem. Res.. 2013, in press.

with PCSs and PREs

Gwendal Kervern (Nancy) Michael J. Knight Alessandro Marchetti Anne Lesage Andrew J. Pell Emeline Barbet-Massin Lyndon Emsley Stefan Jehle Michele Felletti Torsten Herrmann Hugh W. Dannatt Chiara Ferrara Moreno Lelli Amy L. Webber Raphaele J. Clement

FP7-PEOPLE-2012-ITN

pNMR Pushing the Envelope of Nuclear Magnetic Resonance Spectroscopy for Paramagnetic Systems. A Combined Experimental and Theoretical Approach

www.pnmr.eu