High-order finite volume method for curved boundaries and non

2 Problem Formulation. 3 Polynomial Reconstruction Machinery. 4 ARCH Method. 5 Finite Volume Scheme. 6 Numerical Benchmark. 7 Conclusions and Final ...
4MB taille 0 téléchargements 288 vues
High-order finite volume method for curved boundaries and non-matching domain-mesh problems May 23-27, 2016, S˜ ao F´ elix, Portugal

Ricardo Costa 1,2 , St´ephane Clain 1,2 , Gaspar J. Machado 2 , Rapha¨el Loub`ere 1 1 Institut 2 Centro

de Math´ ematiques de Toulouse, Universit´ e de Toulouse, France de Matem´ atica, Universidade do Minho, Guimar˜ aes, Portugal

Outline

1 Motivation and Background 2 Problem Formulation 3 Polynomial Reconstruction Machinery 4 ARCH Method 5 Finite Volume Scheme 6 Numerical Benchmark 7 Conclusions and Final Remarks

2/28

Motivation and Background

Replacing curved boundaries by polygonal edges associated to the mesh provides at most 2nd-order accuracy

∂Ω O(h2) M

Isoparametric elements are widely applied for FEM and DG Very few methods have been developed in the context of HO-FVM

Motivation and Background

3/28

State-of-art in HO-FVM Ghost cells approach: add extra cells between the geometric boundary and the computational domain

1 C.F.

Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured

mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002). Motivation and Background

4/28

State-of-art in HO-FVM Ghost cells approach: add extra cells between the geometric boundary and the computational domain Ollivier-Gooch approach1 : enforce the BC by constraining the LSM associated to the PR can be very time consuming if the LSM matrix has to be updated (moving boundaries/interfaces, tracking interfaces/discontinuities problems)

1 C.F.

Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured

mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002). Motivation and Background

4/28

State-of-art in HO-FVM Ghost cells approach: add extra cells between the geometric boundary and the computational domain Ollivier-Gooch approach1 : enforce the BC by constraining the LSM associated to the PR can be very time consuming if the LSM matrix has to be updated (moving boundaries/interfaces, tracking interfaces/discontinuities problems)

New approach: detach the BC conservation from the LSM matrix Easier, flexible, more efficient, more elegant 1 C.F.

Ollivier-Gooch and M. Van Altena, A high-order accurate unstructured

mesh finite-volume scheme for the advection-diffusion equation, Journal of Computational Physics, (2002). Motivation and Background

4/28

Problem Formulation Poisson’s equation and BCs: ∇2 φ = f ,

in Ω

φ = φD ,

on ΓD

∇φ · n = gN ,

on ΓN

αφ + β∇φ · n = gR ,

on ΓR

Ω, ∂Ω = {ΓD ∪ ΓN ∪ ΓR } – real domain and its boundary n – unit normal vector to ∂Ω φD – Dirichlet BC gN – Neumann BC gR – Robin BC with coefficients α and β Problem Formulation

5/28

Generic FV Scheme ΓD

ei D ni D

ci , eij – cell, edge eij

ci

nij

mi

qij,r

qi D,r

Z

mj cj

nij – normal vector "

Z (∇φ) · ni ds =

∂ci

X

f dx ⇒ ci

qi , qij –quadrature points

|eij |

j∈ν(i)

R X

# ζr Fij,r − fi |ci | = O(hi2R )

r =1

Physical fluxes: Fij,r = ∇φ(qij,r ) · nij , Source term: fi =

S X

ζs f (qi,s )

s=1 Problem Formulation

6/28

Polynomial Reconstruction Machinery Non-conservative PR for inner edges eij ϕij (x ) =

X

α Rα ij (x − mij )

0≤|α|≤d

α = (α1 , α2 ), |α| = α1 + α2 , x α = x1α1 x2α2 Rij = (Rα ij )0≤|α|≤d – coefficients (to be determined)

Polynomial Reconstruction Machinery

7/28

Polynomial Reconstruction Machinery Non-conservative PR for inner edges eij ϕij (x ) =

X

α Rα ij (x − mij )

0≤|α|≤d

α = (α1 , α2 ), |α| = α1 + α2 , x α = x1α1 x2α2 Rij = (Rα ij )0≤|α|≤d – coefficients (to be determined)

Eij (Rij ) =

X q∈Sij

ñ ωij,q

1 |cq |

ô2

Z ϕij (x ) dx − φq cq

‹ij = arg min [Eij (Rij )] eij (x ) defined with R ϕ Rij

Polynomial Reconstruction Machinery

7/28

Polynomial Reconstruction Machinery Conservative PR for Dirichlet boundary edges eiD ϕiD (x ) = φiD +

X

α α Rα iD [(x − miD ) − MiD ]

1≤|α|≤d

α = (α1 , α2 ), |α| = α1 + α2 , x α = x1α1 x2α2 RiD = (Rα iD )1≤|α|≤d – coefficients (to be determined)

Polynomial Reconstruction Machinery

8/28

Polynomial Reconstruction Machinery Conservative PR for Dirichlet boundary edges eiD ϕiD (x ) = φiD +

X

α α Rα iD [(x − miD ) − MiD ]

1≤|α|≤d

α = (α1 , α2 ), |α| = α1 + α2 , x α = x1α1 x2α2 RiD = (Rα iD )1≤|α|≤d – coefficients (to be determined)

EiD (RiD ) =

X q∈SiD

ñ ωiD,q

1 |cq |

ô2

Z ϕiD (x ) dx − φq cq

“iD = arg min [EiD (RiD )] biD (x ) defined with R ϕ RiD

Polynomial Reconstruction Machinery

8/28

Polynomial Reconstruction Machinery Naive mean-value conservation – 2nd-order! Z Z 1 1 φiD = φD (x ) ds, ϕ (x ) ds = φiD |eiD | eiD |eiD | eiD iD Z 1 α MiD = (x − miD )α dx |eiD | eiD

Polynomial Reconstruction Machinery

9/28

Polynomial Reconstruction Machinery Naive mean-value conservation – 2nd-order! Z Z 1 1 φiD = φD (x ) ds, ϕ (x ) ds = φiD |eiD | eiD |eiD | eiD iD Z 1 α MiD = (x − miD )α dx |eiD | eiD Wise mean-value conservation – Quadrature points on ∂Ω! Z Z 1 1 φiD = φD (x ) ds, ϕ (x ) ds = φiD |Û eiD | ÛeiD |Û eiD | ÛeiD iD Z 1 α MiD = (x − miD )α dx |Û eiD | ÛeiD

Polynomial Reconstruction Machinery

9/28

Polynomial Reconstruction Machinery Naive mean-value conservation – 2nd-order! Z Z 1 1 φiD = φD (x ) ds, ϕ (x ) ds = φiD |eiD | eiD |eiD | eiD iD Z 1 α MiD = (x − miD )α dx |eiD | eiD Wise mean-value conservation – Quadrature points on ∂Ω! Z Z 1 1 φiD = φD (x ) ds, ϕ (x ) ds = φiD |Û eiD | ÛeiD |Û eiD | ÛeiD iD Z 1 α MiD = (x − miD )α dx |Û eiD | ÛeiD Wise point-value conservation: φiD = φD (piD ), piD ∈ Û eiD ,

ϕiD (piD ) = φiD

α MiD = (piD − miD )α Polynomial Reconstruction Machinery

9/28

Polynomial Reconstruction Machinery Conservation of Dirichlet BC only α Coefficients MiD are boundary dependent

+ LSM matrix has to be updated for... ... moving boundaries/interfaces or dynamic BC in time-dependent and unsteady problems ... optimization problems ... tracking interfaces/discontinuities problems ... etc.

Ollivier-Gooch method consists in an augmented LSM matrix by constraints rows (equivalent to the wise conservation)

Polynomial Reconstruction Machinery

10/28

ARCH Method

ARCH Adaptive Reconstruction for Conservation of High-order

The aim of ARCH is to improve the boundary treatment The main ideas are... ... conserve the HO accuracy ... detach the boundary from the LSM matrix ... easy handling of moving boundaries ... generic treatment of Dirichlet, Neumann and Robin BCs ARCH Method

11/28

ARCH Method ARCH for boundary edges eiB ϕiB (x ; ψiB ) = ψiB + ϕiB (x ) ϕiB (x ) – non-conservative/naive conservative/wise conservative PR ψiB – free parameter (to be determined)

EiB (RiB ; ψiB ) =

X q∈SiB

ñ ωiB,q

1 ψiB + |cq |

ô2

Z ϕiB (x ; ψiB ) dx − φq cq

“ b ϕiB (x ; ψiB ) defined with RiB = arg min [EiB (RiB ; ψiB )] RiB

ψiB is a RHS – the LSM matrix remains the same :D ARCH Method

12/28

ARCH Method Generic BC on ∂Ω to satisfy: g(x ; α, β) = α(x )φ(x ) + β(x )∇φ · n Dirichlet BC: α = 1, β = 0 Neumann BC: α = 0, β 6= 0 Robin BC: α 6= 0, β 6= 0

ARCH Method

13/28

ARCH Method Generic BC on ∂Ω to satisfy: g(x ; α, β) = α(x )φ(x ) + β(x )∇φ · n Dirichlet BC: α = 1, β = 0 Neumann BC: α = 0, β 6= 0 Robin BC: α 6= 0, β 6= 0

For a given piB ∈ ∂Ω, the parameter ψiB is prescribed such that b b α(piB )ϕiB (piB ; ψ iB ) + β(piB )∇ϕiB (piB ; ψ iB ) · n = g(piB ; α, β) b 0 ψ iB = ψiB −

0 0 1 B(piB ; α, β, ψiB )(ψiB − ψiB ) 0 0 + ϕ1 ) B(piB ; α, β, ψiB ) − B(piB ; α, β, ψiB iB

0 1 ψiB 6= ψiB ARCH Method

13/28

Finite Volume Scheme Numerical fluxes: inner edge eij : Fij,r = ∇ϕ eij (qij,r b ) · nij

boundary edge eiB : FiB,r = ∇ϕiB (qiD,r ; ψiB ) · niB

PR and fluxes are linear identities Linear residual operator Φ → Gi (Φ) for vector Φ ∈ RI Gi (Φ) =

X j∈ν(i)

|eij |

" R X

# ζr Fij,r − fi |ci |,

r =1

G(Φ) = (Gi (Φ))i=1,...,I Free matrix method Compute vector Φ? ∈ RI solution of G(Φ) = 0 Finite Volume Scheme

14/28

Numerical Benchmark

Numerical Benchmark

15/28

Numerical Benchmark 1.2

Manufactured solution: φ(r ) = a + b ln(r )

0.6

x2

a, b such that φ ∈ [0, 1]

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Naive PR 1E0

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-2

Error

1E-4 1E-6

P1 P1 P3 P3 P5 P5

1E-8 1E-10 1E-12

6 4 2 1

1E3

Numerical Benchmark

1E4 DOF

1E5

16/28

Numerical Benchmark 1.2

Manufactured solution: φ(r ) = a + b ln(r )

0.6

x2

a, b such that φ ∈ [0, 1]

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Wise PR

1E-2

1E-2

1E-4

1E-4

1E-6

1E-12

1E-6

ARCH 1E0

P1 P1 P3 P3 P5 P5

6 4 2

1E-10 1

1E3

Numerical Benchmark

1E4 DOF

1E5

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-2 1E-4

1E-8

1E-8 1E-10

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

Error

1E0

Error

Error

Naive PR 1E0

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

16/28

Numerical Benchmark Wise PR 1.2

ARCH

1E0

1E0

1E-2

1E-2

1E-4

1E-4

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0

Error

x2

Error

0.6

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0 x1

Numerical Benchmark

0.6

1.2

1E-12

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

17/28

Numerical Benchmark Wise PR 1.2

ARCH

1E0

1E0

1E-2

1E-2

1E-4

1E-4

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0

Error

x2

Error

0.6

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0

0.6

1E-10 1

1E3

1E4 DOF

x1

1E5

1E3

1E4 DOF

1E0

1E0

1E-2

1E-2

1E-4

1E-4

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0 x1

Numerical Benchmark

0.6

1.2

1E-12

P1 P1 P3 P3 P5 P5

1E5

ARCH

Error

Error

0

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0.6

x2

P1 P1 P3 P3 P5 P5

6 4 2

Wise PR 1.2

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-8 6 4 2

1E-12

1.2

1E-6

P1 P1 P3 P3 P5 P5

1E-6

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

17/28

Numerical Benchmark

DOF = 197340

Naive PR Wise PR ARCH

P1 E1 E∞ 2.91E−03 9.36E−03 1.20E−05 6.12E−05 1.20E−05 6.37E−05

P3 E1 E∞ 2.91E−03 9.36E−03 4.45E−09 3.60E−08 5.35E−09 3.74E−08

P5 E1 E∞ 2.91E−03 9.36E−03 2.98E−11 4.60E−10 9.48E−12 2.15E−09

DOF = 197340

Naive PR Wise PR ARCH

Numerical Benchmark

P1 E1 E∞ 2.87E−03 9.33E−03 1.07E−05 1.36E−02 1.03E−05 2.03E−03

P3 E1 E∞ 2.87E−03 9.31E−03 5.45E−09 1.16E−06 7.42E−10 4.40E−08

P5 E1 E∞ 2.87E−03 9.31E−03 3.37E−12 1.44E−10 1.93E−12 1.00E−10

18/28

Numerical Benchmark Wise PR 1.2

ARCH

1E0

1E0

1E-2

1E-2

1E-4

1E-4

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0

Error

x2

Error

0.6

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0 x1

Numerical Benchmark

0.6

1.2

1E-12

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

19/28

Numerical Benchmark Wise PR 1.2

ARCH

1E0

1E0

1E-2

1E-2

1E-4

1E-4

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0

Error

x2

Error

0.6

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0

0.6

1E-10 1

1E3

1E4 DOF

x1

1E5

1E3

1E4 DOF

1E0

1E0

1E-2

1E-2

1E-4

1E-4

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

-0.6

0 x1

Numerical Benchmark

0.6

1.2

1E-12

P1 P1 P3 P3 P5 P5

1E5

bfbfARCH

Error

Error

0

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

0.6

x2

P1 P1 P3 P3 P5 P5

6 4 2

Wise PR 1.2

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-8 6 4 2

1E-12

1.2

1E-6

P1 P1 P3 P3 P5 P5

1E-6

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

19/28

Numerical Benchmark

DOF = 197340

Naive PR Wise PR ARCH

P1 E1 E∞ 5.88E−03 1.88E−02 6.47E−05 1.77E−04 6.48E−05 1.80E−04

P3 E1 E∞ 5.88E−03 1.88E−02 3.68E−08 1.37E−07 4.44E−08 1.76E−07

P5 E1 E∞ 5.88E−03 1.88E−02 1.80E−10 6.22E−09 1.21E−10 1.24E−08

DOF = 13056

Naive PR Wise PR ARCH

Numerical Benchmark

P1 E1 E∞ 2.13E−02 7.06E−02 9.72E−04 9.67E−03 9.24E−04 6.35E−03

P3 E1 E∞ 2.12E−02 7.05E−02 8.25E−06 6.20E−04 7.29E−07 8.27E−05

P5 E1 E∞ 2.12E−02 7.05E−02 3.31E−08 1.30E−06 4.84E−09 5.86E−07

20/28

Numerical Benchmark Wise PR

x2

Error

0.6

0

1E2

1E0

1E0

1E-2

1E-2

1E-4

1E-4

1E-6 1E-8

-0.6

1E-10 -1.2 -1.2

ARCH

1E2

Error

1.2

-0.6

0

0.6

1.2

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

x1

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

DOF = 13056

Naive PR Wise PR ARCH

Numerical Benchmark

P1 E1 E∞ 2.13E−02 7.06E−02 9.72E−04 9.67E−03 9.24E−04 6.35E−03

P3 E1 E∞ 2.12E−02 7.05E−02 8.25E−06 6.20E−04 7.29E−07 8.27E−05

P5 E1 E∞ 2.12E−02 7.05E−02 3.31E−08 1.30E−06 4.84E−09 5.86E−07

21/28

Numerical Benchmark

ΓI , ΓE – interior and exterior boundaries     x1  cos(θ) ΓI :   = RI (θ; αI )  , x2 sin(θ) Å ã 1 RI (θ; αI ) = rI 1 + sin(αI θ) , 10

    x1  cos(θ) ΓE :   = RE (θ; αE )   x2 sin(θ) Å ã 1 RE (θ; αE ) = rE 1 + sin(αE θ) 10

Manufactured solution: φ(r , θ) = a(θ) + b(θ) ln(r ) a(θ) and b(θ) are chosen such that φ ∈ [0, 1] in Ω

Numerical Benchmark

22/28

Numerical Benchmark 1.2

0.6

x2

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Numerical Benchmark

23/28

Numerical Benchmark 1.2

0.6

x2

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Wise PR

1E-2

1E-2

1E-4

1E-4

1E-6 1E-8 1E-10 1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-6

ARCH 1E0

P1 P1 P3 P3 P5 P5

1E-4

1E-8 6 4 2

1E-10 1

1E3

Numerical Benchmark

1E4 DOF

1E5

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-2

Error

1E0

Error

Error

Naive PR 1E0

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

23/28

Numerical Benchmark 1.2

0.6

x2

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Wise PR

1E-2

1E-2

1E-4

1E-4

1E-6 1E-8 1E-10 1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-6

ARCH 1E0

P1 P1 P3 P3 P5 P5

1E-4

1E-8 6 4 2

1E-10 1

1E3

Numerical Benchmark

1E4 DOF

1E5

1E-12

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

1E-2

Error

1E0

Error

Error

Naive PR 1E0

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 6 4 2

1E-10 1

1E3

1E4 DOF

1E5

1E-12

6 4 2 1

1E3

1E4 DOF

1E5

24/28

Numerical Benchmark | Mesh Pick-up

1.2

0.6

x2

0

-0.6

-1.2 -1.2

-0.6

0

0.6

1.2

x1

Numerical Benchmark

25/28

Numerical Benchmark | Mesh Pick-up Wise PR 1E0 1E-2

1.2

Error

1E-4

0.6

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 1E-10

x2

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

6 4 2 1

1E-12

1E3

0

1E4 DOF

1E5

ARCH 1E0 1E-2

-0.6

Error

1E-4

-1.2 -1.2

-0.6

0 x1

0.6

1.2

1E-6 1E-8 1E-10 1E-12

Numerical Benchmark

6 4 2 1

1E3

1E4 DOF

1E5

25/28

Numerical Benchmark | Mesh Pick-up Wise PR 1E0 1E-2

1.2

Error

1E-4

0.6

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 1E-10

x2

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

6 4 2 1

1E-12

1E3

0

1E4 DOF

1E5

ARCH 1E0 1E-2

-0.6

Error

1E-4

-1.2 -1.2

-0.6

0 x1

0.6

1.2

1E-6 1E-8 1E-10 1E-12

Numerical Benchmark

6 4 2 1

1E3

1E4 DOF

1E5

26/28

Numerical Benchmark | Mesh Pick-up Wise PR 1E0 1E-2

1.2

Error

1E-4

0.6

1E-6

P1 P1 P3 P3 P5 P5

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

P1 P1 P3 P3 P5 P5

1E-8 1E-10

x2

E1 , E∞ , E1 , E∞ , E1 , E∞ ,

6 4 2 1

1E-12

1E3

0

1E4 DOF

1E5

ARCH 1E0 1E-2

-0.6

Error

1E-4

-1.2 -1.2

-0.6

0 x1

0.6

1.2

1E-6 1E-8 1E-10 1E-12

Numerical Benchmark

6 4 2 1

1E3

1E4 DOF

1E5

27/28

Conclusions and Final Remarks

V HO is fully restored with the ARCH method V Wise PR and ARCH methods have comparable accuracy V Extrapolation situations are less robust

Conclusions and Final Remarks

28/28

Conclusions and Final Remarks

V HO is fully restored with the ARCH method V Wise PR and ARCH methods have comparable accuracy V Extrapolation situations are less robust I Benchmarks for Neumann and Robin BCs are in progress (promising results) I Improved mesh pick-up algorithms are in progress

Conclusions and Final Remarks

28/28

Conclusions and Final Remarks

V HO is fully restored with the ARCH method V Wise PR and ARCH methods have comparable accuracy V Extrapolation situations are less robust I Benchmarks for Neumann and Robin BCs are in progress (promising results) I Improved mesh pick-up algorithms are in progress

Obrigado Conclusions and Final Remarks

28/28