High-output dual power amplifier - Matthieu Benoit

High-output dual power amplifier. BA5417. The BA5417 is a 6 to 15V-compatible dual power amplifier developed for use radio cassette players. It is equipped ...
159KB taille 2 téléchargements 346 vues
BA5417 Audio ICs

High-output dual power amplifier BA5417 The BA5417 is a 6 to 15V-compatible dual power amplifier developed for use radio cassette players. It is equipped with standby switching functions for excellent total harmonic distortion and other basic characteristics.

!Applications Radio cassette / Mini compo players

!Features 1) High output. POUT = 2.8W (VCC = 9V, RL 3Ω, THD = 10%) POUT = 5.0W (VCC = 12V, RL 3Ω, THD = 10%) 2) Excellent audio quality THD = 0.1% (f = 1kHz, PO = 0.5W) VNO = 0.3mVrms (Rg = 10kΩ) RR = 55dB (fRR = 100Hz) 3) Wide supply voltage operating range (VCC = 6.0V to 15.0V).

4) Switching noise (“pop” noise) generated when the power is switched on and off is small. 5) Ripple mixing when motor starts has been prevented. 6) Built-in thermal shutdown circuit. 7) Built-in standby switch. Output is not influenced by the standby pin voltage. 8) Soft clipping.

!Absolute maximum ratings (Ta = 25°C) Parameter Power supply voltage Power dissipation

Symbol

Limits

VCC

20∗1

Pd

15∗2

Unit V W

Operating temperature

Topr

−20 ~ +75

°C

Storage temperature

Tstg

−55 ~ +150

°C

∗1 Must be within standby values. ∗2 Ta=75°C(when using infinite heatsink) !Recommended operating conditions (Ta = 25°C) Parameter Power supply voltage

Symbol

Limits

Unit

VCC

6.0 ~ 15.0

V

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(N.C.)

BS2

OUT2

VCC

OUT1

BS1

POWER-GND

STBY

FILTER

NF1

IN1

IN2

NF2

PRE-GND1

PRE-GND2

BS 30k

FILTER 45

GND2

VCC 30k

PRE

− 30k

GND1

PRE

BS

POWER GND

BA5417

Audio ICs

!Block diagram

T.S.D + +



ST.BY 30k

45

BA5417 Audio ICs !Electrical characteristics _ (unless otherwise noted, Ta=25°C, Vcc=9.0V, RL=3Ω, RF=120Ω, Rg=600Ω, f=1kHZ, OTL mode) Parameter

Symbol

Min.

Typ.

Max.

Unit

IO



22

45

mA

Quiescent current

Coniditions VIN=0Vrms

Rated output voltage 1

POUT1

2.2

2.8



W

TDH=10%

Rated output voltage 2

POUT2

4.0

5.0



W

TDH=10%, VCC=12V

Closed-loop voltage gain

GVC

43

45

47

Output noise voltage

VNO



0.3

1.0

Total harmonic distortion



dB

mVrms Rg=10kΩ, DIN AUDIO

THD



0.1

1.0

%

POUT=0.5W

Ripple rejection

RR

42

55



dB

fRR=100Hz, VRR=−10dBm

Crosstalk

CT

48

65



dB

VO=0dBm

Circuit current (with standby switch off)

IOFF



0

20

µA

0.4

mA

Standby pin current when on Activated

Standby pin control voltage Not activated

− VSTBY=VCC

ISIN



0.15

VSTH

3.5





V



VSTL





1.2

V



!Measurement circuit

T.S.D +

+ 30k

30k



− 30k

30k

ST.BY

3 +

4

C2

+ C3

0.15µ

RL

1000µ

8

10

11

12

13

14

GND2

15

+ + C8

+ C5

47µ R2 2.2

1000µ

9

PRE

PRE

GND

7

100µ

+ C4

R1 2.2

6 C6

1000µ

100µ

C1

5

RL

2

45

FILTER

C7 0.15µ

RF2 120

RF1 120 + C9 47µ

+

1 (N.C.)

POWER

45 BS

GND1

VCC BS

C10 47µ

∗1

∗1 V Fig.1

STBY=3.5V

~ VCC

BA5417 Audio ICs !Application example OTL mode circuit

T.S.D +

+ 30k

30k



− 30k

30k

RNF1

RNF2

ST.BY

4

5

6 C6

1000µ

100µ +

R1 2.2

9

11

12

13

14

GND2

15

+ +

+ C5

1000µ

10

PRE

PRE

GND

8

100µ

+ C4 + C3

7

RF1 120

C8

CIN

47µ

RF2 120

CIN

+ C9

R2 2.2

1000µ

+

3 C2

+

2

N.C.

45

FILTER

+

1

POWER

45 BS

GND1

VCC BS

47µ

C10 47µ

C7

C1

IN1

0.15µ

0.15µ

SP

IN2

SP

VCC

POWER GND

Fig.2

BTL mode circuit

T.S.D +

+ 30k

30k



− 30k

30k

ST.BY

2

3 +

4

C2

5 1000µ

100µ

R1 2.2

1000µ

C1

7

9

+

+ C5 1000µ VCC

C8 47µ

11

12

13

R2 2.2

RF1 120 + C9

C10 47µ

47µ

C7 0.15µ

0.15µ

10

VST.BY

SP

1k

10k

Note : 3pin,5pin need coupling capacitors (C3,C5 100µF) for DC offset voltage.

Fig.3

14

GND2

PRE

PRE

GND

8

+ 100µ

+ C4 + C3

6 C6

45

FILTER

+

1 N.C

POWER

45 BS

GND1

VCC BS

15

BA5417 Audio ICs !Electrical characteristics OTL mode

RL=4Ω 6

4

RL=8Ω

2

0 0

5

10

15

•••

•••

•••

ch2

2 1 0.5

1k

ch1 ch2

100

ch1 ch2

0.2 0.1 0.05

0.02 0.05 0.1 0.2

20

80

80

70

70

1

0.2 ch1 ch2 0.1 Rg=10kΩ DIN AUDIO 0.0 0

2 3 5

5

10

15

OUTPUT POWER : PO (W)

POWER SUPPLY VOLTAGE : VCC (V)

Fig.6 Output noise voltage vs. Power supply voltage

500.0

50 VCC=9V ch2→1 VO=0dBm Rg=600Ω RL=3Ω f=20Hz ··· 15kHzLPF =50∼10k ···DIN AUDIO =20k∼50k ···200∼80kHzBPF

40 30 20

20

50 100 300

1k

3k

15kHz LPF

60

ch1

50 VCC=9V RL=3Ω VRR=−10dBm DIN AUDIO (f=50∼10kHz) Rg=600Ω

40 30 20

10k 20k 50k

20

50 100 300

200∼80kHz ch2 BPF

1k

3k

40

400

30

300 IQ

20

10

ISIN (Standby pin supply current)

.0000 .0000

10k 20k 50k

Fig.7 Crosstalk vs. Frequency

200 VST.BY=VCC

4

8

12

100

.0000 20.00

16

POWER SUPPLY VOLTAGE : VCC (V)

FREQUENCY : f (Hz)

FREQUENCY : f (Hz)

Fig.9 Quiescent standby pin supply current vs. Power supply voltage

Fig.8 Ripple rejection vs. Frequency

10 8 RL=3Ω 6 RL=4Ω 4 RL=8Ω

2 0 0

4

8

12

16

20

24

POWER SUPPLY VOLTAGE : VCC (V)

Fig.10 Maximum power dissipation vs. Power supply voltage

ALUMINUM 16

12

8

4

0 0

A B

C

D

25

50

75

100

125

150

AMBIENT TEMPERATURE : Ta (°C)

Fig.11 Thermal derating curve

175

Pd VCC=15V

6

1.2

5

1.0 ICC

VCC=12V

4

0.8 0.6

3 RL=4Ω f=1kHz Drive both VCC=9V channels

2 1 0

0.3 0.5

1

2

3

5

0.4 0.2

OUTPUT POWER : Po (W)

Fig.12 Power dissipation vs. Power supply voltage (RL=4Ω)

CIRCUIT CURRENT : ICC (A)

A : INFINITE HEAT SINK jc=5.0°C / W B : 100cm2 × 2.0mm C : 25cm2 × 2.0mm D : WITHOUT HEAT SINK c=56.8°C / W

20 OTL Stereo

POWER DISSIPATION : Pd (W)

12 POWER DISSIPATION : Pd (W)

MAXIMUM POWER DISSIPATION : PdMAX (W)

QUIESCENT CURRENT : IQ (mA)

ch1→2

RIPPLE REJECTION : RR (dB)

CROSS TALK LEVEL : CT (dB)

50.00

60

20

Fig.5 Total harmonic distortion vs. Output power

POWER SUPPLY VOLTAGE : VCC (V)

Fig.4 Rated output power vs. Power supply voltage

0.5

0.3

STBY PIN CURRENT : ISIN (mA)

RL=3Ω

0.4

VCC=9V RL=3Ω Input both channels 20 f=100Hz DIN AUDIO 1k DIN AUDIO 10 10k 200∼80k BPF 5 10k ch1

OUTPUT NOISE VOLTAGE : VNO (mVrms)

THD=10% f=1kHz DIN AUDIO 8 Input both channels

TOTAL HARMONIC DISTORTION : THD (%)

RATED OUTPUT POWER : POUT (W)

10

BA5417

0.8

7 6

0.6

5

Pd

4

0.4

VCC=15V

3

ICC

VCC=12V

2

0.2

CLOSED LOOP GAIN : GVC(dB)

60

RL=8Ω f=1kHz Drive both 8 channels

CIRCUIT CURRENT : ICC (A)

POWER DISSIPATION : Pd (W)

Audio ICs

VCC=9V

1 0 0.1

0.2 0.3 0.5

1

2

3

50 40 30

CNF=22µF

20

T=Normal VCC=9V RL=6Ω 1~10k DIN AUDIO ι10k~ WIDE BAND OTL=(Stereo)

10

0.0

5

CNF=100µF

CNF=47µF

0

100

OUTPUT POWER : Po (W)

1k

100k

10k

FREQUENCY : f (Hz)

Fig.13 Power dissipation vs. Power supply voltage (RL=8Ω)

Fig.14 Closed loop gain vs. Frequency

T=Normal f=1kHz THD=10% 200HzHPF 20kHzLPF Heat sink used( 4.8×5.4×0.1cm)

0.1

0.0 0

2

4

6

8

10 12 14 16 18 20

f=10kHz 1.0

f=1kHz f=100Hz 0.1

Fig.15 Rated output power vs. Power supply voltage

40 30 20 10 0

T=Normal VCC=9V RL=6Ω VIN=−45dB Heat sink used( 4.8×5.4×0.1cm) 100

1k

10k

100k

POWER DISSIPATION : Pd (W)

CLOSED LOOP GAIN : GVC(dB)

50 49.0

70 60 50 40 30

T=Normal RL=6Ω f=100Hz VPP=−10dBm Heat sink used( 4.8×5.4×0.1cm) 20kHzLPF

20 10

0.01 0.1

POWER SUPPLY : VCC (V)

60

RIPPLE REJECTION : RR (dB)

1.0

80

T=Normal VCC=9V RL=6Ω Heat sink used 10.0 ( 4.8×5.4×0.1cm)

10.0

1.0

0

4

6

8

10 12 14 16 18 20

POWER SUPPLY : VCC (V)

Fig.16 Total harmonic distortion vs. Output power

Fig.17 Ripple rejection vs. Power supply voltage

2.0

T=Normal f=1kHz RL=6Ω 8 200HzHPF 20kHzLPF 7 Heat sink used ( 4.8×5.4×0.1cm) 6

4

V

15 Pd C= VC 3

1.5

2

2V

CC

V

T=Normal VCC=9V RL=6Ω f=1kHz

2

5

1

2

OUTPUT POWER : PO (W)

=1

7

=9V VCC

0.5

STARTING TIME : tS (S)

10.0

100

ICC (A)

OUTPUT POWER : PO(dB)

100

TOTAL HARMONIC DISTORTION : THD (%)

BTL mode

1.5

1.0

0.5

ICC

0.1

1.0

10

20

FREQUENCY : f (Hz)

OUTPUT POWER : Po (W)

Fig.18 Closed loop gain vs. Frequency

Fig.19 Power dissipation vs. Power supplyvoltage (RL=6Ω)

0 10

50

100

400

1000

RIPPLE FILTER CAPACITOR : CRF (µR)

Fig.20 Starting time vs. Ripple filter capacitor

BA5417 Audio ICs

STARTING TIME : tS (S)

300

200

VCC=9V RL=6Ω 100 T=Normal VIN=−39.0dBm 0.1

OUTPUT OFFSET VOLTAGE : VO(mV)

50

40

1.0

4

6

8

10

12 14 16 18 20

POWER SUPPLY : VCC (W)

Fig.21 Starting time vs. Input capacitor

Fig.22 Starting time vs. Power supply voltage

20

10

2

4

6

8

10 12 14

50 40 30 20

0

16 18 20

!External dimensions (Units : mm)

30.0±0.3 3.0±0.2

28.5±0.2

4.2±0.5

8.0±0.3

9.4±0.3

1.2

14.8±0.3

12.35±0.3

0.5

R1.6

15

0.6±0.1 1.2

0.8

HSIP15

1.0

10

100.0

Fig.25 Ripple rejection vs. Ripple filter capacitor

Fig.24 Output offset voltage vs. Power supply voltage

1

T=Normal VCC=9V RL=6Ω VIN=−10dBm

RIPPLE CAPACITOR : CRF (µF)

POWER SUPPLY : VCC (V)

2.0

f=1kHz

10

0.6 1.00

T=Normal 9 RL=6Ω

Vout1

8 7 6 5 4 3 2 1 0 0

VNF1 2

4

6

8 10 12 14 16 18 80

Fig.23 Output voltage Nagative teed back voltage vs. Power supply voltage

f=100Hz 60

10

POWER SUPPLY : VCC (V)

70

30

20.2±0.5

2

INPUT CAPACITOR : CIN (µF)

T=Normal RL=6Ω VO=Vout1−Vout2

0 0

T=Normal RL=6Ω VIN=−39.0dBm f=1kHz 200HPF 200KLPF 0.1 0

10

RIPPLE REJECTION : RR(dB)

STARTING TIME : tS (µS)

400

OUTPUT VOLTAGE : VOUT1 (V) NEGATIVE FEEDBACK VOLTAGE : VNF1 (V)

1.0

500

1000.