IRF1324S-7PPbF

12/21/10 www.irf.com. 1. HEXFET® Power MOSFET. S. D. G. Benefits l Improved Gate, Avalanche and .... e. C u rre n t. (A. ) TJ = 25°C. TJ = 175°C. VDS = 15V.
282KB taille 0 téléchargements 19 vues
PD - 97263B

IRF1324S-7PPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits

D

G S

Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free

VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)

24V 0.8mΩ 1.0mΩ 429A 240A

c

D

S G

S

S

S

S

D 2Pak 7 Pin

G

D

S

Gate

Drain

Source

Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS

Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited)

d

Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds

f

dv/dt TJ TSTG

Avalanche Characteristics EAS (Thermally limited) IAR EAR

Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy

c

Max.

Units

429 303 240 1640 300 2.0 ± 20 1.6 -55 to + 175

A

c c

Continuous Drain Current, VGS @ 10V (Silicon Limited)

W W/°C V V/ns °C

300 (1.6mm from case)

e

230 See Fig. 14, 15, 22a, 22b,

g

mJ A mJ

Thermal Resistance Symbol RθJC RθJA

www.irf.com

Parameter

Junction-to-Case

k

2

Junction-to-Ambient (PCB Mount) , D Pak

j

Typ.

Max.

Units

–––

0.50 40

°C/W

–––

1 12/21/10

IRF1324S-7PPbF Static @ TJ = 25°C (unless otherwise specified) Symbol

Parameter

V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS

Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current

IGSS

Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance

RG

Min. Typ. Max. Units 24 ––– ––– 2.0 ––– ––– ––– ––– –––

––– ––– 0.023 ––– 0.80 1.0 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 3.0 –––

Conditions

V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 160A V VDS = VGS, ID = 250µA µA VDS = 24V, VGS = 0V VDS = 19V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω

d

g

Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)

Parameter

Min. Typ. Max. Units

Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance

270 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) ––– ––– Effective Output Capacitance (Time Related)

h

––– 180 47 58 122 19 240 86 93 7700 3380 1930 4780 4970

––– 252 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– –––

S nC

Conditions VDS = 50V, ID = 160A ID = 75A VDS =12V VGS = 10V ID = 75A, VDS =0V, VGS = 10V VDD = 16V ID = 160A RG =2.7Ω VGS = 10V VGS = 0V VDS = 19V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 19V , See Fig.11 VGS = 0V, VDS = 0V to 19V

g

ns

pF

g

g

i h

Diode Characteristics Symbol IS

Parameter Continuous Source Current

VSD trr

(Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time

Qrr

Reverse Recovery Charge

IRRM ton

Reverse Recovery Current Forward Turn-On Time

ISM

d

Min. Typ. Max. Units

Conditions

c

A

MOSFET symbol

1636

A

showing the integral reverse

–––

––– 429

–––

–––

D

G

p-n junction diode. TJ = 25°C, IS = 160A, VGS = 0V TJ = 25°C VR = 20V, TJ = 125°C IF = 160A di/dt = 100A/µs TJ = 25°C

g

S

––– ––– 1.3 V ––– 71 107 ns ––– 74 110 ––– 83 120 nC TJ = 125°C ––– 92 140 ––– 2.0 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

g

Notes:  Calculated continuous current based on maximum allowable junction „ ISD ≤ 160A, di/dt ≤ 600A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. … Pulse width ≤ 400µs; duty cycle ≤ 2%. temperature. Package limitation current is 240A. Note that current † Coss eff. (TR) is a fixed capacitance that gives the same charging time limitations arising from heating of the device leads may occur with as Coss while VDS is rising from 0 to 80% VDSS. some lead mounting arrangements.(Refer to AN-1140 ‡ C oss eff. (ER) is a fixed capacitance that gives the same energy as http://www.irf.com/technical-info/appnotes/an-1140.pdf C oss while V DS is rising from 0 to 80% VDSS . ‚ Repetitive rating; pulse width limited by max. junction ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom temperature. mended footprint and soldering techniques refer to application note #AN-994. ƒ Limited by TJmax, starting TJ = 25°C, L = 0.018mH ‰ Rθ is measured at TJ approximately 90°C RG = 25Ω, IAS = 160A, VGS =10V. Part not recommended for use above this value.

2

www.irf.com

IRF1324S-7PPbF 1000

1000 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V

BOTTOM

TOP

ID, Drain-to-Source Current (A)

ID, Drain-to-Source Current (A)

TOP

100

BOTTOM

100

4.5V 10 0.1

≤60µs PULSE WIDTH Tj = 175°C

≤60µs PULSE WIDTH Tj = 25°C

1

10

4.5V

10 100

0.1

V DS, Drain-to-Source Voltage (V)

10

100

Fig 2. Typical Output Characteristics

1000

1.8

100

RDS(on) , Drain-to-Source On Resistance (Normalized)

ID, Drain-to-Source Current (A)

1

V DS, Drain-to-Source Voltage (V)

Fig 1. Typical Output Characteristics

T J = 175°C

10 TJ = 25°C 1 VDS = 15V ≤60µs PULSE WIDTH

0.1 2

3

4

5

6

7

8

1.4 1.2 1.0 0.8

-60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C)

Fig 4. Normalized On-Resistance vs. Temperature 12.0

VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd

VGS, Gate-to-Source Voltage (V)

ID= 75A

C oss = C ds + C gd

Ciss Coss

10000

VGS = 10V

1.6

0.6

Fig 3. Typical Transfer Characteristics 100000

ID = 160A

9

VGS, Gate-to-Source Voltage (V)

C, Capacitance (pF)

VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V

Crss

1000

10.0

VDS= 19V VDS= 12V

8.0 6.0 4.0 2.0 0.0

1

10

100

VDS, Drain-to-Source Voltage (V)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

www.irf.com

0

50

100

150

200

QG, Total Gate Charge (nC)

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

3

IRF1324S-7PPbF 10000

ID, Drain-to-Source Current (A)

ISD, Reverse Drain Current (A)

1000

T J = 175°C

OPERATION IN THIS AREA LIMITED BY R DS(on)

1000

100

1msec

100

T J = 25°C 10

10msec

10 Tc = 25°C Tj = 175°C Single Pulse

VGS = 0V 1.0 0.5

1.0

1.5

2.0

2.5

0

VSD, Source-to-Drain Voltage (V)

300 250 200 150 100 50 0 50

75

100

125

150

175

V(BR)DSS , Drain-to-Source Breakdown Voltage (V)

Limited By Package

350

25

100

32 Id = 5mA 31 30 29 28 27 26 25 24 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C )

T C , Case Temperature (°C)

Fig 10. Drain-to-Source Breakdown Voltage

Fig 9. Maximum Drain Current vs. Case Temperature 1.4

EAS , Single Pulse Avalanche Energy (mJ)

1000

1.2 1.0

Energy (µJ)

10

Fig 8. Maximum Safe Operating Area

450 400

1

VDS, Drain-to-Source Voltage (V)

Fig 7. Typical Source-Drain Diode Forward Voltage

0.8 0.6 0.4 0.2 0.0

ID TOP 45A 80A BOTTOM 160A

900 800 700 600 500 400 300 200 100 0

-5

0

5

10

15

20

VDS, Drain-to-Source Voltage (V)

Fig 11. Typical COSS Stored Energy

4

DC

1 0.0

ID, Drain Current (A)

100µsec

25

25

50

75

100

125

150

175

Starting T J , Junction Temperature (°C)

Fig 12. Maximum Avalanche Energy vs. DrainCurrent

www.irf.com

IRF1324S-7PPbF

Thermal Response ( Z thJC ) °C/W

1

D = 0.50 0.1

0.20 0.10 0.05

τJ

0.02 0.01

0.01

R1 R1 τJ τ1

R2 R2

R3 R3

τC τ τ2

τ1

τ2

τ3

τ3

τ4

τ4

Ci= τi/Ri Ci i/Ri

1E-005

τi (sec)

0.02070

0.000010

0.08624

0.000070

0.24491

0.001406

0.15005

0.009080

Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc

SINGLE PULSE ( THERMAL RESPONSE )

0.001 1E-006

Ri (°C/W)

R4 R4

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

1000

Avalanche Current (A)

Duty Cycle = Single Pulse

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse)

0.01

100 0.05 0.10 10

Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

Fig 14. Typical Avalanche Current vs.Pulsewidth

www.irf.com

5

IRF1324S-7PPbF

EAR , Avalanche Energy (mJ)

250

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see Figures 13)

TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 160A

200

150

100

50

0 25

50

75

100

125

150

PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav

175

Starting T J , Junction Temperature (°C)

Fig 15. Maximum Avalanche Energy vs. Temperature

VGS(th) , Gate threshold Voltage (V)

4.5 4.0 3.5 3.0 2.5

ID = 250µA ID = 1.0mA ID = 1.0A

2.0 1.5 1.0 -75 -50 -25 0

25 50 75 100 125 150 175 200

T J , Temperature ( °C )

Fig 16. Threshold Voltage Vs. Temperature

6

www.irf.com

IRF1324S-7PPbF Driver Gate Drive

D.U.T

ƒ -

‚

-

-

„

*

D.U.T. ISD Waveform Reverse Recovery Current

+

 RG

• • • •

dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test

VDD

P.W. Period VGS=10V

Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer

+

D=

Period

P.W.

+

+ -

Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt

Re-Applied Voltage

Body Diode

VDD

Forward Drop

Inductor Current Inductor Curent ISD

Ripple ≤ 5%

* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp

15V

DRIVER

L

VDS

D.U.T

RG

+ V - DD

IAS 20V

A

0.01Ω

tp

I AS

Fig 22a. Unclamped Inductive Test Circuit LD

Fig 22b. Unclamped Inductive Waveforms

VDS

VDS

90%

+ VDD D.U.T

10%

VGS

VGS

Second Pulse Width < 1µs Duty Factor < 0.1%

td(on)

Fig 23a. Switching Time Test Circuit

td(off)

tr

tf

Fig 23b. Switching Time Waveforms Id Vds Vgs

L DUT

0

1K 20K

VCC Vgs(th)

S

Qgodr

Fig 24a. Gate Charge Test Circuit

www.irf.com

Qgd

Qgs2 Qgs1

Fig 24b. Gate Charge Waveform

7

IRF1324S-7PPbF D2Pak - 7 Pin Package Outline Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

8

www.irf.com

IRF1324S-7PPbF D2Pak - 7 Pin Part Marking Information

14

D2Pak - 7 Pin Tape and Reel

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.

www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/10

9