Microbial Diversity and Populations

41: 2068. Bordetella pertussis. Coqueluche. Bordetella bronchiseptica. Diavatopoulos et al. 2005 PLoS Pathog 1(4): e45. Bordetella parapertussis. Coqueluche.
8MB taille 6 téléchargements 424 vues
Microbial Diversity and Populations Sylvain BRISSE Lab. Genotyping of Pathogens and Public Health

1

http://genopole.pasteur.fr/PF8

Questions • What is the extent of the global microbial diversity? • Does microbial species really exist? • What are the amounts of genetic diversity inside species? • How can we describe clonal diversity inside species? • How did pathogenic strains evolved? • Examples of genotyping methods

2

The two ‘sciences’ of microbial diversity Species and above

TAXONOMY (Systematics) Classification Phylogeny Nomenclature Identification

3

Evolutionary history Common language

Below species level POPULATION GENETICS Genetic diversity Phylogenetic groups Clones, clonal families Recombination Natural selection

Microevolution Typing, molecular epidemiology

Phylum-level diversity ~ 100 bacterial phyla (only 12 in 1987) Many were discovered by direct 16S rRNA sequencing of environmental DNA

4

No cultivated strain Lopez-Garcia & Moreira, 2007 Cultivated

Classification of pathogens

‘malaria’

Some examples:

γ-Proteobacteria Escherichia coli Salmonella Yersinia pestis Vibrio cholerae Actinobacteria Mycobacterium tuberculosis Firmicutes Staphylococcus aureus 5 Streptococcus pneumoniae

No known pathogenic Archaea member

Taxonomy (Systematics) • Classification : circumscribing taxa • Nomenclature : giving names to taxa • Identification : assigning strains to taxa

6

Bacterial nomenclature • Taxonomic ranks Domain [Bacteria - Archaea - Eukarya] Phylum (Division) Class Order Family Genus species subspecies

• Binominal system (Linneus, 1753) Pasteurella multocida (agent of chicken cholera) 7

Genus

species

‘Biological esperanto’

Updated taxa lists - valid taxonomy • Jean Euzéby’s web site (Toulouse, France): http://www.bacterio.cict.fr •16S rRNA microbial classification: http://www.taxonomicoutline.org/ • Note that NCBI (GenBank) taxonomy has no official value and contains many non-validated names

8

How many species are there? • ~ 8,000 described species • > 1,000,000,000 existing species? • Many species are very heterogeneous (e.g. Escherichia coli)

9

• Strains within species can differ by genomic content and properties (pathogeny, ecology, epidemiology)

Pragmatic definitions of bacterial species… • Phenotype • DNA:DNA reassociation > 70% ΔTm > 5°C • Phylogeny (16S rRNA) • ‘Polyphasic’ approach • Ecotype • ‘Sequence cluster’ (MLSA) • Genomic distance (ANI) •… 10

Correlation 16S rRNA - DNA:DNA

11

(Rossello-Mora et Amann, 2001)

Pragmatic (but not absolute!) rules for defining species • DNA:DNA hybridization (> 70% reassociation; ΔTM < 5ºC) Wayne et al., 1987

• 16S rRNA < 97% similarity: distinct species > 97% similarity : same or distinct species (one cannot conclude) • Phenotype matters! (clinical, biochemical properties) 12

Genome sequencing and species borders: Average Nucleotide Identity (ANI) at orthologous genes DNA-DNA

Konstantinidis & Tiedje

ANI

5% ANI

13

70% réassociation

• Strains within a species can differ by up to 5% on average • Remark: distance man - chimpanzee = 1.2%

Phylogeny and recombination: do bacterial species exist? Donor

STOP

ATG

Allelic replacement Recipient

STOP

ATG

• Single-gene phylogeny: homologous recombination results in phylogenetic misplacement of recipients True phylogeny

Gene X-based phylogeny

Horizontal gene transfer of gene X

14

A

B C

D

A BD

C

Multilocus Sequence Analysis (MLSA) Chromosomal DNA PCR Amplification & sequencing Gene 1

Gene 2

Gene 3

Gene 4

Gene 5

Gene 6

5-7 housekeeping genes

• Comparison of individual gene phylogenies: detecting recombination • Phylogeny based on concatenated sequences: more reliable 15

Example of the pneumococcus (www.emlsa.net; Hanage, Fraser & Spratt) Individual genes

Concatenated genes

A

BG Spratt & colleagues

16

S. pneumoniae S. pseudopneumoniae S. mitis S. oralis

• Multiple genes buffer against recombination • Species do exist!

Microbial species: conclusions • Clearly demarcated sequence clusters are found in most/all bacterial groups, even those where recombination is frequent between closely-related species • These clusters often, but not always, correspond to previously-defined species (e.g. based on phenotype) • Microbial diversity is not a genetic continuum • ‘Microbial species exist’ 17

Do phylogenetic discontinuities really exist or are they due to sampling bias? Still an open question…

Cultivated non-cultivated (?)

18

Bacterial species are more or less diverse

‘Taxonomy’

‘Population genetics’ Recombination Diversity

Species

Phylogenetic group

Clone

B. anthracis

19

E. coli S. aureus

Y. pestis M. tuberculosis

Monomorphic species: taxonomy is often in disagreement with phylogeny Example: Shigella and E. coli belong to the same phylogenetic group (species) Evolution of Shigella from E. coli strains by acquisition of virulence factors

Ochman et al., 2000

20 (Lan and Reeves, 2001)

Monomorphic taxonomic ‘species’ Tableau 1. Exemples d'espèces 'taxonomiques' qui sont en réalité des clones hautement pathogènes issus d'espèces 'génomiques' Espèce

Infection causée

Espèce ancestrale

Référence

"Salmonella typhi" (a)

Fièvre typhoïde

Salmonella enterica

Selander et al. 1990 Infect. Immun. 58: 2262

Yersinia pestis

Peste

Yersinia pseudotuberculosis

Achtman et al. 1999 PNAS 96: 14043

Shigella flexneri, S. boydii, S. dysenteriae, S. sonnei

shigelloses

Escherichia coli

Pupo et al. 2000 PNAS 97: 10567

Bacillus anthracis

Charbon

Bacillus cereus

Priest et al., 2004 J. Bact. 186: 7959

Burkholderia mallei

Morve

Burkholderia pseudomallei

Godoy et al. 2003 J. Clin. Microbiol. 41: 2068

Bordetella pertussis

Coqueluche

Bordetella bronchiseptica

Diavatopoulos et al. 2005 PLoS Pathog 1(4): e45

Bordetella parapertussis

Coqueluche

Bordetella bronchiseptica

Diavatopoulos et al. 2005 PLoS Pathog 1(4): e45

Mycobacterium ulcerans

Ulcère de Buruli

Mycobacterium marinum

Stinear et al., 2007, Genome Res. 17:192

Mycobacterium tuberculosis

Tuberculose

Mycobacterium prototuberculosis

Gutierrez et al. 2005 PLoS Pathog 1(1): e5

(a) Les sérotypes de salmonelles ne sont maintenant plus considérés comme des espèces dans la nomenclature.

21

‘Nomen pericolosum’ taxonomic rule: do not change name if risk for health / medical consequences

Typical bacterial species are highly heterogeneous Comparison of Escherichia coli with primates Property

E. coli

Homo sapiens

Primates

Mol% G + C

48-52

42

42

16S-18S rRNA variability

> 15 bases

?

< 16 bases

DNA:DNA reassociation

>70%

98.6%

#

$

>70%

&

Age 125-160 Myr < 1 Myr < 65 Myr # Mouse 18S rRNA differs from humans by 16 bases $ Comparison between Homo sapiens and chimpanzee & Homo sapiens - lemurs Source: Staley JT, ASM News 65:681

• 70% DNA-DNA 5% nucleotidic divergence • Average divergence among humans < 0.1% • Distance man - chimpanzee: 1.2% 22 • Homo sapiens = one ‘strain’ within Primates !?

Describing and understanding withinspecies diversity Radial phylogeny (MEGA)

23

Network representation (Minimum Spanning Tree, eBURST)

MLST Multilocus Sequence Typing Maiden, Spratt, Feil, Achtman et al.

• Sequence of one gene (fumC, 500 bp)

1 1 2 3 3

Alleles:

abcZ

fumC

icd

gyrB

recA

mdh

ureI

1

1

1

7

22

39

7

Sequence type (ST)

24

•Allele

Alleles

1

1 1 1 7 22 39 7

2

1 2 1 7 22 39 7

3

1 3 1 7 22 39 7

eBURST approach • Find closely-related genotypes and group them into clonal complexes (clonal families) • Identify founder genotype of family Clonal Complex 1 ST4 : 1 - 8 - 1 - 3 - 1 - 1 - 10

Advantages: • Identifies founder genotype

ST3 : 1 - 1 - 1 - 1 - 1 - 1 - 10

• Shows genotype frequency ST1 : 1 - 1 - 1 - 1 - 1 - 1 - 1

• Links STs according to distance ST2 : 1 - 1 - 1 - 5 - 1 - 1 - 1

Clonal Complex 15 ST16 : 7 - 4 - 3 - 5 - 8 - 4 – 2 ST15 : 7 - 4 - 3 - 5 - 45 - 4 – 2

25

ST48 : 7 - 4 - 3 - 17 - 45 - 4 - 2

• Map other characteristics (e.g. serotype) onto graph as colors

Microbial microevolution : Clonal Expansion - diversification time Expanding clone

Founder genotype

26

Clones (clonal complexes) share a common ancestor

Expansion - diversification clonale: A multilocus view

27

eBURST analysis • eburst.mlst.net • http://goeburst.phyloviz.net/ Founder genotype

28

S. pneumoniae MLST data

Minimum spanning tree (e.g. software BioNumerics)

• Proposes links between clonal families • Links may be unreliable

Clonal diversification & recombinaison

Founder genotype

29

Single mutation Homologous recombinaison (horizontal transfer)

Phylogeny based on allelic profiles: more reliable than sequence-based phylogeny in case of recombination 1 2 3

ATCGATGCCAGGCGTACAGGCGTAGGGTTTACGGGTTTAC ............................A........... ...T.......T.......C...............A.... A

Mutation

1121111 B

1111111

HGT

3

1131111 C C Profiles

C

A B

A B C

Nucleotides

30

A B

A B

C

Escherichia coli: diversity of pathogenic potential 1. Commensal strains 2. Animal pathogenic strains 3. Intestinal human pathogens EPEC: EnteroPathogenic (attaching-effacing) ETEC: EnteroToxinogenic E. coli EIEC: Enteroinvasive (similar to Shigella) EAggEC: EnteroAggregative DAEC: Diffusely Adherent STEC/VTEC: ShigaToxin/VerocytoToxic includes EHEC: EnteroHemorr.

4. Extraintestinal human pathogens 31

ExPEC: Extraintestinal Pathogen UPEC: UroPathogenic NMEC: Neonatal Meningitis

Pathotypes = Clonal families?

Commensal EPEC ETEC EHEC APEC EIEC S. flexneri S. dysenteriae S. sonnei S. boydii

32

Escherichia coli: 700 strains, MLST

Pathotype ≠ pathogenic clone

Evolution from commensal to pathogen Acquisition of genomic islands in several phylogenetic lines (clones)

Ochman et al., 2000

33

Reid et al., 2000 Medini et al., 2008

Duality of bacterial genomes

34

Core genome

Flexible genome

Essential genes

Accessory genes

Neutral evolution

Adaptation, virulence

Stability

Rapid adaptation

Vertical inheritence

Horizontal transfer

Sequence variation

Gene content

MLST, SNPs

DNA arrays

Phylogeny, classification Definition of species, clones, genotypes

Biological understanding: phenotype, ecology, virulence, …

Gene content diversity within E. coli E. coli

3 strains completely sequenced: UPEC CFT073 O157:H7 EDL933 Commensal K12

CFT073: 21% specific genes

39%

Pathogenic clones have acquired genes by lateral gene transfer

35

Brzuszkiewicz et al., 2006

Pan-genome: sum of all genes present in all strains of a species

E. Coli pangenome

Touchon et al., PLoS Genetics 2009

36

Klebsiella pneumoniae Opportunistic nosocomial pathogen • 5 - 8% nosocomial infections Europe / USA • Urinary, respiratory, bacteriemia • ESBLs Community pathogen • Friedlander’s pneumonia; pyogenic liver abscess (PLA) • rhinoscleroma, ozena, granuloma inguinale • Infections in animals: metritis, mammitis Ubiquitous • Gut, throat carriage 37 • Environment: soil, water, plants; N2 fixation

Population structure of K. pneumoniae

• ‘Genetically compact species (π < 1%) • Frequent recombination • Two major clones of K1 & K2 • ‘K. rhinoscleromatis’, ‘K. ozaenae’:

K. ozaenae

K7

K4

K2-CC65 K5

K1-CC23

clones of K. pneumoniae

K2-CC14

K1-CC82

K25 K3 K. rhinoscleromatis

38

Brisse et al., PLoS One, 2009

Minimum Spanning Tree, MLST data, 297 K. pneumoniae strains

Virulence depends on clone, not only K-type

rmpA+

K. ozaenae

K7

K4

rmpAK2-CC65 K5

K1-CC23

K2-CC14

K1-CC82

Resp. infections K25

K3 K. rhinoscleromatis

39

Brisse et al., PLoS One, 2009

PLA

Conclusions: clinical importance of clonal diversity within bacterial species • A single species generally harbors clonal families within distinct properties (pathogenicity, ecology, epidemiology,…) • Virulence factors are distributed unequally among strains • Study of core genome (MLST) is complementary to function-associated genes ‘The unit of pathogenicity is the clone’ (see e.g. Musser 1996, Emerg. Inf. Dis. 2:1)

40

Microbes know no borders UK-1 UK-2 UK-3

DK-A DK-B DK-C

• Transmission of resistant strains among hospitals • Food-borne infections

? SP-I SP-II SP-III

• Travel-associated infections

α ,β, γ Need for common language on strain names

41

MLST databases: standard strain designation

www.pasteur.fr/mlst

pubmlst.org

www.mlst.net

http://mlst.ucc.ie/

42

Drawbacks of MLST

• No direct information on virulence, resistance, antigens,… • Discriminatory power is not sufficient in monomorphic pathogens

43

How to subtype monomorphic pathogens?

- MLVA: Multilocus VNTR Analysis (VNTR: variable number of Tandem Repeats) - SNPs (Single Nucleotide polymorphisms) - CRISPR (Clustered regularly interspaced short palindromic repeats) - PFGE (Pulsed Field Gel Electrophoresis)

44

Need to distinguish methods suited for local epidemiology (MLVA, CRISPR, PFGE) and global epidemiology/evolutionary studies (SNPs)

Example of Salmonella enterica serotype Typhi 105 Typhi strains

CC3Newport

CC1Typhimurium CC2Typhi

Typhi (Salmonella enterica ser. Typhi)

199 genes (88,739 bp)

88 SNPs

dHPLC 45

Roumagnac et al., Science, 2007

Global history of Typhi epidemiology • Since ~ 50,000 years • Several pandemic waves • Importance of long-term asymptomatic carriage

46

Roumagnac et al., Science (2006) Roumagnac, Brisse, and Weill, 2007. Médecine-Sciences

New sequencing technologies 454

SOLID

Solexa

47

Caracteristics of ‘Next-generation sequencing’ • 100 times quicker, 100 times cheaper (than Sanger) • Amplification on solid support, novel chemistry • Short read: 35/55/72 (Solexa), 100/320 (454) • Very high number of reads: 2-4 Gb (Solexa), 200-400 Mb (454) in a few days • Several bacterial genomes in a few days! 48

Bibliography: Bacterial Population Genetics Brisse, S. 2008. L'espèce bactérienne: néessaire, mais pas suffisante. Bull. Soc. Franç. Microbiol. 23:164-174. Feil EJ, Spratt BG.Recombination and the population structures of bacterial pathogens.Annu Rev Microbiol. 2001;55:561-90 Feil EJ. Small change: keeping pace with microevolution. Nat Rev Microbiol. 2004 2(6):483-95 Lan R, Reeves PR. When does a clone deserve a name? A perspective on bacterial species based on population 49 genetics. Trends Microbiol 2001;9: 419-424.

Bibliography: Bacterial species Cohan FM. What are bacterial species? Annu Rev Microbiol. 2002;56:457-87. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol. 2005 3(9):733-9. Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6(6):431-40. Fraser, C., E. J. Alm, M. F. Polz, B. G. Spratt, and W. P. Hanage. 2009. The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741-6.

50