Physical modelling of the behaviour of vertically loaded plate ... - CFMS

Nov 25, 2005 - Deep sea soil properties. 0. 5. 15. 10. 20. 20. 60. 100 .... Layer of sand. Displacement sensor. Hydraulic jack. Chain. 250 mm. 210 mm. 180 mm.
4MB taille 3 téléchargements 348 vues
SINGLE BUOY MOORINGS INC., Monaco

Physical modelling of the behaviour of vertically loaded plate anchors in deep sea sediments: laboratory, centrifuge and field tests • P.Foray (3S), S. Alhayari & E.Pons (SBM) • L. Thorel and N. Thetiot (LCPC Nantes) • B. Souviat, S. Bale and E. Flavigny (3S) BGA-CFMS November BGA-CFMS Paris Paris 2525 November 2005 2005

1

Outline • • • • • • •

Introduction Research program Laboratory model tests Half-scale onshore field tests Centrifuge tests Numerical modelling Conclusions BGA-CFMS Paris 25 November 2005

2

Anchoring problems in deep offshore

BGA-CFMS Paris 25 November 2005

3

Introduction • Plate anchors as an alternative to suction caissons in deep sea sediments • VELPA developed by SBM for deepwater Taut Moorings (S.Alhayari DOT Conf. Marseille 2003) • Explore the possibility of installation • Evaluate the ultimate pullout capacity. Previous work (Forest et al 1995): holding factors Nc =9 (long term) and 15 (short term)

• Effect of soil suction ? BGA-CFMS Paris 25 November 2005

4

Suction anchors F

F

anchor suction L

Side frictiion D

BGA-CFMS Paris 25 November 2005

5

Plate anchors

VLA Anchors

SEPLA

BGA-CFMS Paris 25 November 2005

6

VErtically Loaded Plate Anchor (VELPA) for Deepwater Taut Moorings SBM, inc.

BGA-CFMS Paris 25 November 2005

7

Installation of the VELPA IHC Hydrohammer Pyrodriver (combustion hammer) (Alhayari & Van Foeken 2003) - self-penetration with follower - driving of the anchor - pretension and rotation Prototype : 4, 8 and12m2 (4m in height x 3m in width for 12m2) BGA-CFMS Paris 25 November 2005

8

Research Program • Physical modelling of the anchor combined with numerical modelling • Reproduce the different phases of installation, pretension and pullout of anchors • Reproduce the deep sea soil conditions • Laboratory tests (models at scale 1/15) • Field Tests (scale 1/6) • Centrifuge Tests (scale 1/100) • Numerical modelling BGA-CFMS Paris 25 November 2005

9

Deep sea soil properties Water content w, %

Plasticity Index PI, % 20

60

100

140

0

5

Gulf of Guinea

Gulf of Mexico 10

Gulf of Guinea

1300 m 15

20

BGA-CFMS Paris 25 November 2005

10

Typical deep sea soil profile Undrained shear strength Su, kPa

0

5

10

15

20

BGA-CFMS Paris 25 November 2005

11

Laboratory tests

•Laboratory tank: 2m x 1m x1m •Homogeneous clay: 1st Tank : Su = 1kPa 2nd Tank: Su = 4 kPa 3rd Tank: Su = 20 kPa •6 to 9 tests in each tank

BGA-CFMS Paris 25 November 2005

12

Plate Anchor Scale Model • Dimensions of the

model plate: - height : 20 cm - width : 30 cm -thickness : 1.4 cm

Front face

•Efficient anchorage surface 6.10-2 m2. •Scale: 1/15 •Instrumentation: inclinometer pore pressure

Rear face

BGA-CFMS Paris 25 November 2005

13

Driving of the plate + pretension at 80°

BGA-CFMS Paris 25 November 2005

14

Pullout Tests MUD LINE

α

ANCHORING LINE

α

PLATE ANCHOR

Sketch – Definition of the anchoring angle α

•Initial depth of the anchor between 40 cm and 70 cm •Anchoring angles varied from 25° to 90° •Loading rate: 4mm/min BGA-CFMS Paris 25 November 2005

15

Pullout test 3 in lab tank n°1 – load and suction curves Inclination of the anchor : 60° 450

4,5

400

4

350

3,5

300

3

250

2,5

200

2

Load Suction

150

1,5

100

1

50

0,5

Prescribed displacement (mm) 0

0 0

20

40

60

80

100

120

BGA-CFMS Paris 25 November 2005

140

160

180

16

11,0

1000,0

10,0

900,0

9,0

800,0

8,0

700,0

7,0

Force (N)

1100,0

600,0

Force (N)

500,0

Succion

6,0 5,0

400,0

4,0

300,0

3,0

200,0

2,0

100,0

1,0

0,0

0,0 300,0

0,0

50,0

100,0

150,0

200,0

Displacement (mm)

250,0

BGA-CFMS Paris 25 November 2005

Suction (kPa)

Pullout Test 7 in Tank n°2. Load and Suction curves. Inclination of the anchor α = 45°

17

Summary of Laboratory Results Tank n°

Su (kPa)

Ultimate Pullout capacity (N)

Holding Factor Nc

Suction Contribution

1

0.8-1.1

300 - 460

5.4 - 7.8

73%

2

3.5-4.5

917 - 1150

4 - 4.8

61%

3

20

7400 - 11600

6.2 – 9.5

20%

Ultimate Pullout Capacity = Su x Effective area x Nc Suction contribution = (∆u x Effective area)/ Total Load •Relatively low values of Nc •Drainage paths observed •Successful pretension and rotation phase BGA-CFMS Paris 25 November 2005

18

Half scale onshore field tests •Bourget du Lac site: Homogeneous clay over 6m deep •Average shear strength: Su = 33 kPa •Dimensions of the plate: Height: 0.675m Width: 0.5m Thickness: 3.3 cm •Scale: 1/6 BGA-CFMS Paris 25 November 2005

19

Anchor before installation

BGA-CFMS Paris 25 November 2005

20

Driving Follower

•Driving of the plate to 4.5m deep •Initial depth of middle point after pretension and rotation: 3.75m and 4.25 m

BGA-CFMS Paris 25 November 2005

21

Pullout Loading

•5 complete tests •Inclination angles: 35°, 38°, 40 °, 45°, 53° •Unloading steps and strong changes in the pullout rate were applied to simulate storm conditions BGA-CFMS Paris 25 November 2005

22

Anchor after complete pullout test

BGA-CFMS Paris 25 November 2005

23

Typical pullout results Load

-8 0

80

-6 0

60

-4 0

40

-2 0

20 0

100

200

300

400

500

600

700

800

0 tim e (s )

900 0

Pore pressure Kyowa Pore pressure Entran Load

-100

100

-80

100 80

-60

60

-40

40

-20

20 0

20

40

60

80

100

0

120 0

Displacement (cm) -2 0

20

-20

40

-4 0

40

-40

60

-6 0

20

BGA-CFMS Paris 25 November 2005

24

Load (kN)

P o re p re ss ure - E n tra n

Pore pressure (kPa)

P o re p re s s u re (k P a )

-1 0 0

120

P o re p re ss ure - K yo w a

L o a d (kN )

-1 2 0

Summary of Field Results • Ultimate pullout capacities: 80 to 100 kN • Holding capacity factors Nc = 7.5 to 9.3 • Suction values up to 40 kPa, corresponding to 15% to 20% of the total load, nearly constant (continuous loading or fast loading) • Possible drainage paths • The anchoring depth may be not sufficient to develop a complete deep failure mechanism • Technical success for all the phases of installation, pretension/rotation and pullout. BGA-CFMS Paris 25 November 2005

25

Centrifuge Tests (LCPC Nantes)

BGA-CFMS Paris 25 November 2005

26

Centrifuge testing program • Consolidation of kaolin « Speswhite clay » in order to reproduce the in-situ gradient in undrained shear strength Su = 0.8 z • Soil properties control with in flight CPT tests • First series of tests on pre-embedded anchors positioned at an inclination of 45° • Second series of complete tests (driving, pretensioning at 80° and pullout at 45° • Third series of installation and pretension tests (control of the plate rotation) BGA-CFMS Paris 25 November 2005

27

Sample preparation

Installation of the pre-embedded anchors

Sample consolidation BGA-CFMS Paris 25 November 2005

28

Container configuration for tests with pre-embedded anchors Centrifuge side

Door Side

Chain

Beam

Force sensor

Displacement sensor 210 mm

Anchor 1

520 mm

45°

Cables

Anchor 2 Electric jack

220 mm

Layer of sand

260 mm

Displacement sensors 900 mm

Pore water pressure sensors

Figure 4 : Container configuration (Pullout tests)

BGA-CFMS Paris 25 November 2005

29

Container configuration for complete tests Pretensioning position

Pullout position

Hydraulic jack Follower

Chain Force sensor

Fork 10°

520 mm

210 mm 250 mm

45°

Cable

Displacement sensor Electric jack

180 mm Layer of sand

200 mm 900 mm BGA-CFMS Paris 25 November 2005

30

Follower Hydraulic jack Penetrometer Settlement sensors

Pulley for traction at 45°

Camera

Water level sensor

Device for maintaining the anchor in place during consolidation (before being buried by hand down to -45mm)

Pulley for traction at 10°

Centrifuge arm

Traction cable

Plan view

Electric jack

BGA-CFMS Paris 25 November 2005

Figure 9 : Container configuration (Complete tests)

Settlement sensor

Follower

Fork

31

Instrumented model plates

Dimensions: 4x 3x 0.4cm (scale 1/100) BGA-CFMS Paris 25 November 2005

32

Pretension tests • Verification

of the orientation of the plate after pretension.

•Final orientation determined by the orientation of the anchoring line

85°

BGA-CFMS Paris 25 November 2005

33

Pretension tests • Control

of the plate orientation after a pretension test 10° reversing Plate 3 (20.02.2003) 12

10

40°

10° reversing Plate 3

Force (daN)

8

6

4

2

0 0

5

10

15

20

25

30

35

40

Displacement (mm)

BGA-CFMS Paris 25 November 2005

34

Pretension of the plate: displacement criteria 100 90

P late inclination (°)

80 70 60 50 40 30 20 10 0 0

5

10

15

20

25

30

35

40

45

50

D isplacem ent from the first bending point (m m ) BGA-CFMS Paris 25 November 2005

35

Pre-embedded anchor Pullout test – inclination 45° 120

50 P113 P103

80

0 -50

Suction Pi2

60

-100 Force

40

-150

20

-200

0

-250 150

0

50

100

Presure variation (kPa)

Pullout Force (daN)

100

Displacement (mm) BGA-CFMS Paris 25 November 2005

36

Driven and pretensioned anchor final inclination 45° 1,2

-240

1

-200 -160

0,8

-120

Load

0,6 0,4

-80

Suction

-40

0,2

0

20

40 60 80 10 Displacement (mm)

120

BGA-CFMS Paris 25 November 2005

0 37

Summary of centrifuge tests results Ultimate Pullout capacity (MN) Preembedded anchors

Holding Factor Nc

Suction (kPa)

Suction Contribution

Anchor 1: 6.1 28 (res.15)

Driven and Anchor 1: 6.6 pretensioned Anchor 2: 4.9 anchors

31 24

60

14%

• High values of Nc, slightly lower for driven plates (effect of soil remoulding after installation ?) • Peak/residual values for pre-embedded plates •« Plateau » values of UPC and suction for driven plates •Successful pretension and rotation phase BGA-CFMS Paris 25 November 2005

38

Numerical modelling: Plaxis 3

2

α 4 A

5 A

y

0

x

1

BGA-CFMS Paris 25 November 2005

39

Plaxis calculation- undrained conditions: evidence of succion effect

BGA-CFMS Paris 25 November 2005

40

Plaxis calculation_Anchor at 90°

BGA-CFMS Paris 25 November 2005

41

Effect of embeddement depth on the failure mechanism 1 .0 00

Low depth: heave of the soil surface

0 .7 50

0 .5 00

0 .2 50

0 .0 00

1.000

0.750

0.500

Large depth: deep failure mechanism

0.250

0.000

BGA-CFMS Paris 25 November 2005

42

Influence of load inclination L o ad -d isp lacem en t cu rves as a fu n ctio n o f p late in clin atio n 300

P u llo u t lo ad (kN /m )

250

200 0° 15°

150

30° 45°

100

60° 75°

50

0 0,00

0,01

0,01

0,02

0,02

0,03

0,03

0,04

0,04

-50

D isp lacem en t(m )

BGA-CFMS Paris 25 November 2005

43

C hart 2 Ex c es s PP [kN/m2] 160

75°

Pi-max

60° 45°

120

30°

Unrealistic excess pore pressure

80

15° 0°

40

0

D40

-40 0

0,01

0,02

0,03

0,04

0,05

Dis plac ement [m]

BGA-CFMS Paris 25 November 2005

44

Simulation of field conditions 350

P ullout Load ( kN )

300 250 75 kN ts les jours

200

50kN ts les jours 50kN ts les 2 jours

150

75kN ts les 2 jours

100 50 0 0

0,2

0,4

0,6

0,8

1

1,2

1,4

D isplacem ent ( m )

BGA-CFMS Paris 25 November 2005

45

Simulation of field conditions summary Ultimate Pullout capacity (MN) Anchor at 2Om, 45°

4-6

Holding Factors Nc 15 - 17

Suction (kPa)

100 kPa

BGA-CFMS Paris 25 November 2005

Suction Contribution

30%

46

Conclusions (1) • Pretension method using quasi-vertical inclination of the anchoring line gave a satisfactory start of rotation • Final inclination of the anchor controlled by the inclination of the anchoring line • Suction contribution of 15% to 20% of the total capacity in most of the tests. This was confirmed by numerical analysis. • Holding factors Nc higher than 15 were observed, provided the anchoring depth is sufficient to develop a deep failure mechanism BGA-CFMS Paris 25 November 2005

47

Conclusions (2) • Interesting complementarity between: - Laboratory tests - Field tests - Centrifuge tests - Numerical models

BGA-CFMS Paris 25 November 2005

48

Further research • Effect of long term loading/dissipation of the suction • Displacements under working load • Effect of cyclic or shock loading ? • Local setup effects ? • Full Scale tests in offshore conditions • 3D numerical analysis BGA-CFMS Paris 25 November 2005

49

Thank you for your attention

BGA-CFMS Paris 25 November 2005

50