Sparsity in signal and image processing: from modeling and

Regularization theory. ▷ Bayesian inference for invese ..... Algebraic methods: Discretization, Uniqueness and Stability ...... Elastic net prior model p(f|ν) = ∏j.
2MB taille 4 téléchargements 317 vues
.

Inverse problems, Deconvolution and Parametric Estimation Ali Mohammad-Djafari Laboratoire des Signaux et Syst`emes, UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11 SUPELEC, 91192 Gif-sur-Yvette, France http://lss.supelec.free.fr Email: [email protected] http://djafari.free.fr A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

1/1

Contents ◮ Invese problems examples: ◮

◮ ◮ ◮ ◮



Deconvolution, Image restoration, Image reconstruction, Fourier synthesis, ... Classification of Invesion methods: Analytical, Parametric and Non Parametric algebraic methods Regularization theory Bayesian inference for invese problems Full Bayesian with hyperparameter estimation Two main steps in Bayesian approach: Prior modeling and Bayesian computation Priors which enforce sparsity ◮ ◮ ◮





Heavy tailed: Double Exponential, Generalized Gaussian, ... Mixture models: Mixture of Gaussians, Student-t, ... Gauss-Markov-Potts

Computational tools: MCMC and Variational Bayesian Approximation Some results and applications ◮

X ray Computed Tomography, Microwave and Ultrasound imaging, Sattelite Image separation, Hyperspectral image processing, Spectrometry, CMB, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

2/1

Contents ◮ ◮

◮ ◮ ◮ ◮



Invese problems examples Classification of Invesion methods: Analytical, Parametric and Non Parametric algebraic methods Regularization theory Bayesian inference for invese problems Full Bayesian with hyperparameter estimation Two main steps in Bayesian approach: Prior modeling and Bayesian computation Priors which enforce sparsity ◮ ◮ ◮





Heavy tailed: Double Exponential, Generalized Gaussian, ... Mixture models: Mixture of Gaussians, Student-t, ... Gauss-Markov-Potts

Computational tools: MCMC and Variational Bayesian Approximation Applications: X ray Computed Tomography, Microwave and Ultrasound imaging, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

3/1

Direct and indirect observation ◮

Direct observation of a few quantities are possible: length, time, electrical charge, number of particles



For many others, we only can measure them by transforming them. Example: Thermometer transforms variation of temeprature f to variation of length g .



Relating measurable quantity g to the desired quantity f is called Forward modeling: g = H(f ).



Predicting the measurements g if we knew the desired quantity f and the measurement system is called Forward problem.



Infering on the desired quantity f from the measurement g is called Inverse problem.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

4/1

Inverse problems : 3 main examples ◮

Example 1: Measuring variation of temperature with a therometer ◮ ◮



Example 2: Seeing outside of a body: Making an image using a camera, a microscope or a telescope ◮ ◮



f (t) variation of temperature over time g (t) variation of length of the liquid in thermometer

f (x, y ) real scene g (x, y ) observed image

Example 3: Seeing inside of a body: Computed Tomography usng X rays, US, Microwave, etc. ◮ ◮

f (x, y ) a section of a real 3D body f (x, y , z) gφ (r ) a line of observed radiographe gφ (r , z)



Example 1: Deconvolution



Example 2: Image restoration



Example 3: Image reconstruction

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

5/1

Measuring variation of temperature with a therometer ◮

f (t) variation of temperature over time



g (t) variation of length of the liquid in thermometer



Forward model: Convolution Z g (t) = f (t ′ ) h(t − t ′ ) dt ′ + ǫ(t) h(t): impulse response of the measurement system



Inverse problem: Deconvolution Given the forward model H (impulse response h(t))) and a set of data g (ti ), i = 1, · · · , M find f (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

6/1

Measuring variation of temperature with a therometer Forward model: Convolution Z g (t) = f (t ′ ) h(t − t ′ ) dt ′ + ǫ(t) 0.8

0.8

Thermometer f (t)−→ h(t) −→

0.6

0.4

0.2

0

−0.2

0.6

g (t)

0.4

0.2

0

0

10

20

30

40

50

−0.2

60

0

10

20

t

30

40

50

60

t

Inversion: Deconvolution 0.8

f (t)

g (t)

0.6

0.4

0.2

0

−0.2

0

10

20

30

40

50

60

t

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

7/1

Instrumentation Input f (t)



Impluse response h(t)

Output g (t)



Ideal Instrument



A linear and time invariant instrument is characterized by its impulse response h(t).



Ideal Instrument



Forward problem: f (t), h(t) −→ g (t) = h(t) ∗ f (t) Two linked problems in instrumentation:



◮ ◮

Inversion: Identification:

A. Mohammad-Djafari,

g (t) = f (t)



h(t) = δ(t)

does not exist.

does not exist.

g (t), h(t) −→ f (t) g (t), f (t) −→ h(t)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

8/1

Ex1: Isolators resistivity against lightning strike An instrument giving the possibility to apply very high voltage to simulate lightning strike 1.2 Signal réel

Tension (MV)

1 0.8 Signal restauré

0.6

Signal issu du diviseur THT

0.4 0.2 0 −0.2 0

0.5

1

1.5

2

Temps (ms)

edf– Les Renardi`eres

A. Mohammad-Djafari,

Real and Estimated

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

9/1

Ex2: Radio-astronomy yb(t)

x(t)

0.9

0.9

0.8

? =⇒

0.7 0.6 0.5 0.4 0.3 0.2

0.7 0.6 0.5 0.4 0.3 0.2

0.1

0.1

0 −0.1 0

0.8

0

100

200

300

400

500

600

700

800

900

1000

−0.1 0

100

200

300

400

500

600

700

800

900

1000

Forward model: ǫ(t)

f (t)

A. Mohammad-Djafari,



h(t)

❄ ✲ +

Inverse problems, Deconvolution and Parametric Estimation,

✲ g (t) = h(t) ∗ f (t) +

MATIS SUPELEC,

10/1

Telecommunication: transmission channel compensation ◮

Data transmission System Mo

Flot d’entre

Codeur Filtre

Dem

Modulateur

Ligne

Dmodulateur

Filtre ´ Egaliseur

Flot Dcision de sortie Dcodage

Canal



Channel Model: convolution + noise b(t)

T Canal h(t)

y (t)

Squence transmise

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

Squence reue

MATIS SUPELEC,

11/1

Seeing outside of a body: Making an image with a camera, a microscope or a telescope ◮

f (x, y ) real scene



g (x, y ) observed image



Forward model: Convolution ZZ g (x, y ) = f (x ′ , y ′ ) h(x − x ′ , y − y ′ ) dx ′ dy ′ + ǫ(x, y ) h(x, y ): Point Spread Function (PSF) of the imaging system



Inverse problem: Image restoration Given the forward model H (PSF h(x, y ))) and a set of data g (xi , yi ), i = 1, · · · , M find f (x, y )

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

12/1

Making an image with an unfocused camera Forward model: 2D Convolution ZZ g (x, y ) = f (x ′ , y ′ ) h(x − x ′ , y − y ′ ) dx ′ dy ′ + ǫ(x, y ) ǫ(x, y )

f (x, y ) ✲ h(x, y )

❄ ✲ + ✲

g (x, y )

Inversion: Image Deconvolution or Restoration ? ⇐=

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

13/1

? =⇒

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

14/1

Seeing inside of a body: Computed Tomography ◮

f (x, y ) a section of a real 3D body f (x, y , z)



gφ (r ) a line of observed radiographe gφ (r , z)



Forward model: Line integrals or Radon Transform Z gφ (r ) = f (x, y ) dl + ǫφ (r ) L

ZZ r,φ f (x, y ) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r ) =



Inverse problem: Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r ), i = 1, · · · , M find f (x, y )

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

15/1

Making an image of the interior of a body ◮

f (x, y ) a section of a real 3D body f (x, y , z)



gφ (r ) a line of observed radiographe gφ (r , z)



Forward model: Line integrals or Radon Transform Z gφ (r ) = f (x, y ) dl + ǫφ (r ) L

ZZ r,φ f (x, y ) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r ) =



Inverse problem: Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r ), i = 1, · · · , M find f (x, y )

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

16/1

2D and 3D Computed Tomography 3D

2D Projections

80

60 f(x,y)

y 40

20

0 x −20

−40

−60

−80 −80

gφ (r1 , r2 ) =

Z

f (x, y , z) dl Lr1 ,r2 ,φ

−60

gφ (r ) =

−40

Z

−20

0

20

40

60

80

f (x, y ) dl Lr,φ

Forward probelm: f (x, y ) or f (x, y , z) −→ gφ (r ) or gφ (r1 , r2 ) Inverse problem: gφ (r ) or gφ (r1 , r2 ) −→ f (x, y ) or f (x, y , z) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

17/1

Computed Tomography: Radon Transform

Forward: Inverse:

A. Mohammad-Djafari,

f (x, y ) f (x, y )

−→ ←−

g (r , φ) g (r , φ)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

18/1

Microwave or ultrasound imaging Measurs: diffracted wave by the object g (ri ) Unknown quantity: f (r) = k02 (n2 (r) − 1) Intermediate quantity : φ(r)

y

Object

ZZ

r'

Gm (ri , r′ )φ(r′ ) f (r′ ) dr′ , ri ∈ S D ZZ Go (r, r′ )φ(r′ ) f (r′ ) dr′ , r ∈ D φ(r) = φ0 (r) + g (ri ) =

D

Born approximation (φ(r′ ) ≃ φ0 (r′ )) ): ZZ Gm (ri , r′ )φ0 (r′ ) f (r′ ) dr′ , ri ∈ S g (ri ) = D

r x

z



φ0 Discretization :   g = H(f) g = Gm Fφ −→ with F = diag(f) φ= φ0 + Go Fφ  H(f) = Gm F(I − Go F)−1 φ0 A. Mohammad-Djafari,

Measurement

plane

Incident

plane Wave

Inverse problems, Deconvolution and Parametric Estimation,

(φ, f ) g

MATIS SUPELEC,

19/1

Fourier Synthesis in X rayZZ Tomography

f (x, y ) δ(r − x cos φ − y sin φ) dx dy

g (r , φ) =

G (Ω, φ) = F (ωx , ωy ) = F (ωx , ωy ) = G (Ω, φ) y ✻ s ■

Z

g (r , φ) exp {−jΩr } dr

ZZ

f (x, y ) exp {−jωx x, ωy y } dx dy

for





ωy = Ω sin φ ωy ✻

α

r



f (x, y ) φ

ωx = Ω cos φ and

F (ωx , ωy )

φ

x







ωx

g (r , φ)–FT–G (Ω, φ)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

20/1

Fourier Synthesis in X ray tomography G (ωx , ωy ) =

ZZ

f (x, y ) exp {−j (ωx x + ωy y )} dx dy

v 50 100

u

? =⇒

150 200 250 300 350 400 450 50

100

150

200

250

300

Forward problem: Given f (x, y ) compute G (ωx , ωy ) Inverse problem: Given G (ωx , ωy ) on those lines estimate f (x, y ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

21/1

Fourier Synthesis in Diffraction tomography ωy

y ψ(r, φ)

^ f (ωx , ω y )

FT 1

2 2 1

f (x, y)

x

-k 0

ωx

k0

Incident plane wave Diffracted wave

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

22/1

Fourier Synthesis in Diffraction tomography G (ωx , ωy ) =

ZZ

f (x, y ) exp {−j (ωx x + ωy y )} dx dy

v

u

? =⇒

Forward problem: Given f (x, y ) compute G (ωx , ωy ) Inverse problem : Given G (ωx , ωy ) on those semi cercles estimate f (x, y ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

23/1

Fourier Synthesis in different imaging systems G (ωx , ωy ) = v

ZZ

f (x, y ) exp {−j (ωx x + ωy y )} dx dy v

u

v

u

X ray Tomography

Diffraction

v

u

Eddy current

u

SAR & Radar

Forward problem: Given f (x, y ) compute G (ωx , ωy ) Inverse problem : Given G (ωx , ωy ) on those algebraic lines, cercles or curves, estimate f (x, y ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

24/1

Invers Problems: other examples and applications ◮

X ray, Gamma ray Computed Tomography (CT)



Microwave and ultrasound tomography



Positron emission tomography (PET)



Magnetic resonance imaging (MRI)



Photoacoustic imaging



Radio astronomy



Geophysical imaging



Non Destructive Evaluation (NDE) and Testing (NDT) techniques in industry



Hyperspectral imaging



Earth observation methods (Radar, SAR, IR, ...)



Survey and tracking in security systems

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

25/1

Computed tomography (CT) A Multislice CT Scanner Fan beam X−ray Tomography −1

−0.5

0

0.5

g (si ) = 1

Source positions

−1

−0.5

A. Mohammad-Djafari,

0.5

f (r) dli + ǫ(si )

Li

Detector positions

0

Z

1

Discretization g = Hf + ǫ

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

26/1

Positron emission tomography (PET)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

27/1

Magnetic resonance imaging (MRI) Nuclear magnetic resonance imaging (NMRI), Para-sagittal MRI of the head

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

28/1

Radio astronomy (interferometry imaging systems) The Very Large Array in New Mexico, an example of a radio telescope.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

29/1

General inverse problems

H

(

model

g

,

measured data

f

,

unknown quantity

z

,

intermediate quantity

ǫ

)

=

errors and noise

Particular cases: • Implicite model linking f and z :

 g = H1 (f, z) + ǫ H2 (f, z) = 0

• Simple non linear model:

g = H(f) + ǫ

• Linear model with additive noise:

g = Hf + ǫ

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

30/1

0

Time evolution of liquid-solid fusion interface

Solid :

∂Ts ∂t ∂Tl ∂t





∂ 2 Ts ∂ 2 Ts 2 + ∂x 2 ∂x   2 2 αl ∂∂xT2l + ∂∂xT2l

= αs

= Liquid : Energy ∂Tl s conservation ks ∂T v .~n ∂n − kl ∂n = ρLf ~ ~v : speed of solid-liquid interface ~n : normal vector on the interface Observed quantity : Unknown quantity : Intermediate uknown quantity:

A. Mohammad-Djafari,

T1

L

Ts (x, y, t)

solid phase

solid-liquid interface

......

S(x, y, t)

Tl (x, y, t)

y liquid phase

T0

0 x

∂Tl (x,0,t) ∂t

heat flux on the heating surface ∂Ts (x,0,t) ∂t solid-liquid surface evolution S(x, y , t) temperature field Ts (x, y , t) et Tl (x, y , t)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

31/1

General formulation of inverse problems ◮

General non linear inverse problems: g (s) = [Hf (r)](s) + ǫ(s),



Linear models: g (s) =

Z

r ∈ R,

s∈S

f (r) h(r, s) dr + ǫ(s)

If h(r, s) = h(r − s) −→ Convolution. ◮

Discrete data: Z g (si ) = h(si , r) f (r) dr + ǫ(si ),

i = 1, · · · , m



Inversion: Given the forward model H and the data g = {g (si ), i = 1, · · · , m)} estimate f (r)



Well-posed and Ill-posed problems (Hadamard): existance, uniqueness and stability



Need for prior information

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

32/1

General formulation of inverse problems F

G

H : F 7→ G

Im(H f g 0

Ker (H) f1

g1

f2

g2

H ∗ : G 7→ F < H ∗ g , f >=< g , Hf > ∀f ∈ F , ∀g ∈ G

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

33/1

Inverse problems scientific communities Two communities working on Inverse problems: ◮

Mathematical departments: Analytical methods: Existance and Uniqueness Differential equations, PDE



Engineering and Computer sciences: Algebraic methods: Discretization, Uniqueness and Stability Integral equations, Discretization using Moments method, Galerkin, ...

Two examples: ◮

Deconvolution: Inverse filtering and Wiener filtering



X ray Computed Tomography: Radon transform: Direct Inversion or Filtered Backprojection methods

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

34/1

Differential Equation, State Space and Input-Output A simple electric system f (t) ↑

— R ———–— | x(t) ↑ C | ————–—–—

↑ g (t)

∂x(t) + x(t), RC = 1 ∂t Differential Equation Modelling ∂x(t) + x(t) = f (t), x(t) = g (t) ∂t State Space Modelling  ∂x(t) = −x(t) + f (t) ∂t g (t) = x(t) f (t) = R i (t) + vc (t) = RC





Input-Output Modelling  1 pX (p) = −X (p) + F (p) → X (p) = p+1 F (p) ∂t = −x(t) + f (t) → g (t) = x(t) = h(t) ∗ f (t), h(t) = exp {−t} g (t) = x(t) ◮

 ∂x(t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

35/1

A more complex electric system example — R1 ————— — R2 ——————— | | f (t) ↑ x2 (t) ↑ C1 x1 (t) ↑ C2 | | —————————————————— f (t) =

∂x2 (t) + x2 (t), ∂t

x2 (t) =

↑ g (t)

∂x1 (t) + x1 (t) ∂t

2

◮ ◮



x1 (t) 1 (t) Differential Equation model: ∂ ∂t + 2 ∂x∂t + x1 (t) = f (t) 2 State space model #  "      ∂x1 (t)  −1 1 x1 (t) 0  ∂t  f (t) = +  ∂x2 (t) 0 −1 x2 (t) 1 ∂t    1   x1 (t) =  g (t) 0

Input-Output Model: g (t) = h(t) ∗ f (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

36/1

Design/Control Inverse problems examples Simple Electrical system: a



x(0) = x0 ,

g (t) = x(t)

Design: θ = a = RC ◮ ◮



∂x(t) + x(t) = f (t), ∂t

Forward: Given θ = a and f (t), t > 0, find x(t), t > 0 Inverse: Given x(t) and f (t) find θ = a

Control: f (t) ◮ ◮

Forward: Given θ = a and f (t), t > 0, find x(t), t > 0 Inverse: Given θ = a and x(t), t > 0, find f (t)

More complex Electrical system: f (t) = b

∂x2 (t) + x2 (t), ∂t

x2 (t) = a

∂x1 (t) + x1 (t), ∂t

g (t) = x1 (t)

θ = (a = R1 C1 , b = R2 C2 ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

37/1

Design/Control Inverse problems examples Mass-spring-dashpot system m



∂x(t) ∂ 2 x(t) +c + k = F (t), 2 ∂t ∂t

∂x (0) = v0 ∂t

Design: θ = (m, c, k) ◮





x(0) = x0 ,

Forward: Given θ = (m, c, k), x0 , v0 and F (t), t > 0, find x(t), t > 0 Inverse: Given x(t) for t > 0, v0 , F (t) find θ = (m, c, k)

Control: F (t) ◮



Forward: Given θ = (m, c, k), x0 , v0 and F (t), t > 0, find x(t), t > 0 Inverse: Given θ = (m, c, k), v0 and x(t), t > 0, find F (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

38/1

Input-Output model ◮

Linear Systems ◮





Single Input Single Output (SISO) systems Z y (t) = h(t, τ ) u(τ ) dτ

Multi Input Multi Output (MIMO) systems Z y(t) = H(t, τ ) u(τ ) dτ

Linear Time Invariant System ◮

SISO Convolution y (t) = h(t) ∗ u(t) =



MIMO Convolution y(t) =



Z

Z

h(t − τ ) u(τ ) dτ

H(t − τ ) u(τ ) dτ 

 . . . Impulse response h(t) or H(t) =  . hij (t) .  . . .

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

39/1

State space model: Continuous case Dynamic systems: ◮

Single Input Single Output (SISO) system:  x(t) ˙ = A x(t) + B u(t) State equation y (t) = C x(t) + D v (t) Observation equation



Multiple Input Multiple Output (MIMO) system:  ˙ x(t) = H x(t) + B u(t) State equation y(t) = C x(t) + D v(t) Observation equation H, B, C and D are the matrices of the system.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

40/1

Analytical methods (mathematical physics) g (si ) =

Z

h(si , r) f (r) dr + ǫ(si ), i = 1, · · · , m Z g (s) = h(s, r) f (r) dr Z b w (s, r) g (s) ds f (r) =

w (s, r) minimizing a criterion: 2

2 Z

f (r)](s) ds Q(w (s, r)) = g (s) − [H b f (r)](s) = g (s) − [H b 2 2 Z Z b = g (s) − h(s, r) f (r) dr ds 2 Z Z Z h(s, r)w (s, r) g (s) ds dr ds = g (s) −

Trivial solution: A. Mohammad-Djafari,

h(s, r)w (s, r) = δ(r)δ(s)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

41/1

Analytical methods ◮

Trivial solution: w (s, r) = h−1 (s, r) Example: Fourier Transform: Z g (s) = f (r) exp {−js.r} dr h(s, r) = exp {−js.r} −→ w (s, r) = exp {+js.r} Z ˆ g (s) exp {+js.r} ds f (r) =



Known classical solutions for specific expressions of h(s, r): ◮ ◮

1D cases: 1D Fourier, Hilbert, Weil, Melin, ... 2D cases: 2D Fourier, Radon, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

42/1

Deconvolution: Analytical methods Time domain Forward model: g (t) = h(t) ∗ f (t) + ǫ(t) ǫ(t) ❄

f (t) ✲ h(t) ✲ + ✲

g (t)

Deconvolution: 1 g (t) → w (t) = IFT { H(ω) f (t) } →b

Deconvolution:

g (t) → W (ω) → b f (t) A. Mohammad-Djafari,

Fourier domain G (ω) = H(ω) F (ω) + E (ω) E (ω) ❄

F (ω)✲ H(ω) ✲ + ✲

G (ω)

Inverse filtering G (ω) → 1 → Fb (ω) H(ω)

Wiener filtering

G (ω) →

H ∗ (ω) S (ω) |H(ω)|2 + Sǫ (ω)

Inverse problems, Deconvolution and Parametric Estimation,

f

b (ω) →F

MATIS SUPELEC,

43/1

Deconvolution example 0.6

1.8 1.6

0.5 1.4 0.4

1.2 1

0.3

0.8 0.2 0.6 0.4

0.1

0.2 0 0 −0.2

50

100

150

200

250

300

−0.1

50

100

f (t) 1.8

1.8

1.6

1.6

1.4

1.4

1.2

1.2

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0 −0.2

150

200

250

300

200

250

300

g (t)

0

50

100

150

200

Inverse Filtering A. Mohammad-Djafari,

250

300

−0.2

50

100

150

Wiener Filtering

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

44/1

Analytical Inversion methods S•

y ✻

r



f (x, y ) φ



x

•D g (r , φ) Radon Transform: ZZ g (r , φ) = f (x, y ) δ(r − x cos φ − y sin φ) dx dy D   Z π Z +∞ ∂ 1 ∂r g (r , φ) f (x, y ) = − 2 dr dφ 2π 0 −∞ (r − x cos φ − y sin φ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

45/1

X ray Tomography   Z I = g (r , φ) = − ln f (x, y ) dl I0 Lr ,φ ZZ

150

100

y

f(x,y)

f (x, y ) δ(r − x cos φ − y sin φ) dx dy

g (r , φ) =

50

D

0

x

−50

−100

f (x, y )✲

−150

−150

phi

−100

−50

0

50

100

✲g (r , φ)

RT

150

60

p(r,phi)

40 315

IRT ?

270 225

20

0

180

−20

135

=⇒

90 45

−60

0 r

A. Mohammad-Djafari,

−40

−60

−40

−20

0

Inverse problems, Deconvolution and Parametric Estimation,

20

40

60

MATIS SUPELEC,

46/1

Analytical Inversion methods S•

y ✻

r



f (x, y ) φ



x

Radon:

ZZ

•D Z g (r , φ) = f (x, y ) dl L

f (x, y ) δ(r − x cos φ − y sin φ) dx dy   Z π Z +∞ ∂ 1 ∂r g (r , φ) f (x, y ) = − 2 dr dφ 2π 0 −∞ (r − x cos φ − y sin φ)

g (r , φ) =

D

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

47/1

Filtered Backprojection method f (x, y ) =



1 − 2 2π

Z

π

0

Z

∂ ∂r g (r , φ)

+∞ −∞

(r − x cos φ − y sin φ)

dr dφ

∂g (r , φ) ∂r Z ∞ 1 g (r , φ) ′ dr Hilbert TransformH : g1 (r , φ) = π (r − r ′ ) Z π 0 1 g1 (r ′ = x cos φ + y sin φ, φ) dφ Backprojection B : f (x, y ) = 2π 0 Derivation D :

g (r , φ) =

f (x, y ) = B H D g (r , φ) = B F1−1 |Ω| F1 g (r , φ) • Backprojection of filtered projections: g (r ,φ)

−→

FT

F1

A. Mohammad-Djafari,

−→

Filter

|Ω|

−→

IFT

F1−1

g1 (r ,φ)

−→

Backprojection B

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

f (x,y )

−→

48/1

Limitations : Limited angle or noisy data

60

60

60

60

40

40

40

40

20

20

20

20

0

0

0

0

−20

−20

−20

−20

−40

−40

−40

−40

−60

−60

−60

−60

−40

−20

0

20

Original

40

60

−60

−40

−20

0

20

40

64 proj.

60

−60

−60 −40

−20

0

20

40

16 proj.



Limited angle or noisy data



Accounting for detector size



Other measurement geometries: fan beam, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

60

−60

−40

−20

0

20

40

8 proj. [0, π/2]

MATIS SUPELEC,

49/1

60

Limitations : Limited angle or noisy data −60

−60

−60

−40

−40

−20

−20

−150

−40 −100

f(x,y)

y

−20 −50

0

x

0

50

20

0

0

20

20

40

40

100

40 150

60

60 −60

−40

−20

0

20

40

60

−150

−100

−50

0

50

100

60 −60

150

−40

−20

0

20

40

60

−60

−60

−40

−40

−20

−20

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60

−150

−100

f(x,y)

y

−50

x

0

50

0

0

20

20

40

40

100

150

60 −150

Original

A. Mohammad-Djafari,

−100

−50

0

50

Data

100

150

60 −60

−40

−20

0

20

40

60

Backprojection Filtered Backprojection

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

50/1

Parametric methods ◮

◮ ◮

f (r) is described in a parametric form with a very few number b which minimizes a of parameters θ and one searches θ criterion such as: P Least Squares (LS): Q(θ) = i |gi − [H f (θ)]i |2 P Robust criteria : Q(θ) = i φ (|gi − [H f (θ)]i |) with different functions φ (L1 , Hubert, ...).



Likelihood :

L(θ) = − ln p(g|θ)



Penalized likelihood :

L(θ) = − ln p(g|θ) + λΩ(θ)

Examples: ◮



Spectrometry: f (t) modelled as a sum og gaussians P f (t) = K a N (t|µk , vk ) θ = {ak , µk , vk } k k=1

Tomography in CND: f (x, y ) is modelled as a superposition of circular or elleiptical discs θ = {ak , µk , rk }

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

51/1

Non parametric methods Z g (si ) =



h(si , r) f (r) dr + ǫ(si ),

i = 1, · · · , M

f (r) is assumed to be well approximated by N X f (r) ≃ fj bj (r) j=1

with {bj (r)} a basis or any other set of known functions Z N X h(si , r) bj (r) dr, i = 1, · · · , M g (si ) = gi ≃ fj j=1

g = Hf + ǫ with Hij = ◮ ◮

Z

h(si , r) bj (r) dr

H is huge dimensional LS solution : bf = arg minf {Q(f)} with P Q(f) = i |gi − [Hf]i |2 = kg − Hfk2 does not give satisfactory result.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

52/1

Algebraic methods: Discretization Hij

y ✻

S•

r



f1 fj

f (x, y )

gi

φ



fN

x

•D g (r , φ) g (r , φ) =

Z

P f b (x, y ) j j j 1 if (x, y ) ∈ pixel j bj (x, y ) = 0 else f (x, y ) =

f (x, y ) dl

gi =

L

N X

Hij fj + ǫi

j=1

g = Hf + ǫ A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

53/1

Inversion: Deterministic methods Data matching ◮





Observation model gi = hi (f) + ǫi , i = 1, . . . , M −→ g = H(f) + ǫ Misatch between data and output of the model ∆(g, H(f))

Examples:

– LS

bf = arg min {∆(g, H(f))} f

∆(g, H(f)) = kg − H(f)k2 =

X

|gi − hi (f)|2

i

– Lp – KL

p

∆(g, H(f)) = kg − H(f)k = ∆(g, H(f)) =

X i



X

|gi − hi (f)|p ,

1 T

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

60/1

Main advantages of the Bayesian approach ◮

MAP = Regularization



Posterior mean ? Marginal MAP ?



More information in the posterior law than only its mode or its mean



Meaning and tools for estimating hyper parameters



Meaning and tools for model selection



More specific and specialized priors, particularly through the hidden variables More computational tools:





◮ ◮



Expectation-Maximization for computing the maximum likelihood parameters MCMC for posterior exploration Variational Bayes for analytical computation of the posterior marginals ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

61/1

2D and 3D Computed Tomography 3D

2D Projections

80

60 f(x,y)

y 40

20

0 x −20

−40

−60

−80 −80

gφ (r1 , r2 ) =

Z

f (x, y , z) dl Lr1 ,r2 ,φ

−60

gφ (r ) =

−40

Z

−20

0

20

40

60

80

f (x, y ) dl Lr,φ

Forward probelm: f (x, y ) or f (x, y , z) −→ gφ (r ) or gφ (r1 , r2 ) Inverse problem: gφ (r ) or gφ (r1 , r2 ) −→ f (x, y ) or f (x, y , z) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

62/1

Inverse problems:Z Discretization g (si ) =



h(si , r) f (r) dr + ǫ(si ),

i = 1, · · · , M

f (r) is assumed to be well approximated by N X f (r) ≃ fj bj (r) j=1

with {bj (r)} a basis or any other set of known functions Z N X h(si , r) bj (r) dr, i = 1, · · · , M g (si ) = gi ≃ fj j=1

g = Hf + ǫ with Hij = ◮ ◮

Z

h(si , r) bj (r) dr

H is huge dimensional LS solution : bf = arg minf {Q(f)} with P Q(f) = i |gi − [Hf]i |2 = kg − Hfk2 does not give satisfactory result.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

63/1

Inverse problems: Deterministic methods Data matching ◮





Observation model gi = hi (f) + ǫi , i = 1, . . . , M −→ g = H(f) + ǫ Misatch between data and output of the model ∆(g, H(f))

Examples:

– LS

bf = arg min {∆(g, H(f))} f

∆(g, H(f)) = kg − H(f)k2 =

X

|gi − hi (f)|2

i

– Lp – KL

p

∆(g, H(f)) = kg − H(f)k = ∆(g, H(f)) =

X i



X

|gi − hi (f)|p ,

1q





Iterative algorithm q1 −→ q2 −→ q1 −→ q2 , · · ·   q1 (f)

n o ∝ exp hln p(g, f, θ; M)iq2 (θ ) o n  q2 (θ) ∝ exp hln p(g, f, θ; M)i q1 (f ) p(f, θ|g) −→

A. Mohammad-Djafari,

Variational Bayesian Approximation

−→ b q1 (f) −→ bf

b −→ b q2 (θ) −→ θ

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

89/1

Summary of Bayesian estimation 1 ◮

Simple Bayesian Model and Estimation θ2

θ1





p(f|θ 2 ) Prior ◮

⋄ p(g|f, θ 1 ) −→ Likelihood

p(f|g, θ) Posterior

−→ bf

Full Bayesian Model and Hyperparameter Estimation ↓ α, β Hyper prior model p(θ|α, β) θ2

θ1





p(f|θ 2 ) Prior A. Mohammad-Djafari,

⋄ p(g|f, θ 1 ) −→ p(f, θ|g, α, β) Likelihood

Joint Posterior

−→ bf b −→ θ

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

90/1

Summary of Bayesian estimation 2 ◮

Marginalization for Hyperparameter Estimation p(f, θ|g) −→

p(θ|g)

b −→ p(f|θ, b g) −→ bf −→ θ

Joint Posterior Marginalize over f ◮

Full Bayesian Model with a Hierarchical Prior Model

θ3

θ2

θ1







p(z|θ 3 )

⋄ p(f|z, θ 2 ) ⋄ p(g|f, θ 1 ) −→ p(f, z|g, θ)

Hidden variable

A. Mohammad-Djafari,

Prior

Likelihood

Joint Posterior

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

−→ bf z −→ b 91/1

Summary of Bayesian estimation 3 • Full Bayesian Hierarchical Model with Hyperparameter Estimation ↓ α, β, γ Hyper prior model p(θ|α, β, γ) θ3

θ2

θ1







⋄ p(f|z, θ 2 ) ⋄ p(g|f, θ 1 ) −→

p(z|θ 3 )

Hidden variable

Prior

Likelihood

p(f, z, θ|g) Joint Posterior

• Full Bayesian Hierarchical Model and Variational Approximation

−→ bf z −→ b b −→ θ

↓ α, β, γ Hyper prior model p(θ|α, β, γ) θ3 ❄ p(z|θ3 )



Hidden variable A. Mohammad-Djafari,

θ2 ❄ p(f|z, θ2 ) Prior

θ1 ❄ ⋄ p(g|f, θ1 ) −→ p(f, z, θ|g) −→ Likelihood

Joint Posterior

Inverse problems, Deconvolution and Parametric Estimation,

VBA q1 (f) q2 (z) q3 (θ) Separable Approximation

MATIS SUPELEC,

−→ bf −→ b z b −→ θ

92/1

Which images I am looking for? 50 100 150 200 250 300 350 400 450 50

A. Mohammad-Djafari,

100

150

200

250

300

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

93/1

Which image I am looking for?

Gauss-Markov

Generalized GM

Piecewize Gaussian

Mixture of GM

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

94/1

Gauss-Markov-Potts prior models for images

f (r)

◮ ◮

z(r)

c(r) = 1 − δ(z(r) − z(r′ ))

p(f (r)|z(r) = k, mk , vk ) = N (mk , vk ) X p(f (r)) = P(z(r) = k) N (mk , vk ) Mixture of Gaussians

k Q Separable iid hidden variables: p(z) = r p(z(r)) Markovian hidden variables:  p(z) Potts-Markov:   X  p(z(r)|z(r′ ), r′ ∈ V(r)) ∝ exp γ δ(z(r) − z(r′ ))  ′     X X r ∈V(r)  p(z) ∝ exp γ δ(z(r) − z(r′ ))   r∈R r′ ∈V(r)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

95/1

Four different cases To each pixel of the image is associated 2 variables f (r) and z(r) ◮

f|z Gaussian iid, z iid : Mixture of Gaussians



f|z Gauss-Markov, z iid : Mixture of Gauss-Markov



f|z Gaussian iid, z Potts-Markov : Mixture of Independent Gaussians (MIG with Hidden Potts)



f|z Markov, z Potts-Markov : Mixture of Gauss-Markov (MGM with hidden Potts)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

f (r)

z(r) MATIS SUPELEC,

96/1

Application of CT in NDT Reconstruction from only 2 projections

g1 (x) = ◮



Z

f (x, y ) dy ,

g2 (y ) =

Z

f (x, y ) dx

Given the marginals g1 (x) and g2 (y ) find the joint distribution f (x, y ). Infinite number of solutions : f (x, y ) = g1 (x) g2 (y ) Ω(x, y ) Ω(x, y ) is a Copula: Z Z Ω(x, y ) dx = 1 and Ω(x, y ) dy = 1

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

97/1

Application in CT

20

40

60

80

100

120 20

g|f g = Hf + ǫ g|f ∼ N (Hf, σǫ2 I) Gaussian

A. Mohammad-Djafari,

f|z iid Gaussian or Gauss-Markov

z iid or Potts

Inverse problems, Deconvolution and Parametric Estimation,

40

60

80

100

120

c c(r) ∈ {0, 1} 1 − δ(z(r) − z(r′ )) binary

MATIS SUPELEC,

98/1

Proposed algorithm p(f, z, θ|g) ∝ p(g|f, z, θ) p(f|z, θ) p(θ) General scheme: bf ∼ p(f|b b g) −→ b b g) −→ θ b ∼ (θ|bf, b z, θ, z ∼ p(z|bf, θ, z, g)

Iterative algorithme: ◮



b g) ∝ p(g|f, θ) p(f|b b Estimate f using p(f|b z, θ, z, θ) Needs optimisation of a quadratic criterion. b g) ∝ p(g|bf, b b p(z) Estimate z using p(z|bf, θ, z, θ) Needs sampling of a Potts Markov field.



Estimate θ using p(θ|bf, b z, g) ∝ p(g|bf, σǫ2 I) p(bf|b z, (mk , vk )) p(θ) Conjugate priors −→ analytical expressions.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

99/1

Results

Original

Backprojection

Gauss-Markov+pos

Filtered BP

GM+Line process

GM+Label process

20

20

20

40

40

40

60

60

60

80

80

80

100

100

100

120

120 20

A. Mohammad-Djafari,

LS

40

60

80

100

120

c

120 20

40

60

80

100

120

Inverse problems, Deconvolution and Parametric Estimation,

z

20

40

60

MATIS SUPELEC,

80

100

120

100/1

c

Application in Microwave imaging g (ω) = g (u, v ) =

ZZ

Z

f (r) exp {−j(ω.r)} dr + ǫ(ω)

f (x, y ) exp {−j(ux + vy )} dx dy + ǫ(u, v ) g = Hf + ǫ

20

20

20

20

40

40

40

40

60

60

60

60

80

80

80

80

100

100

100

100

120

120 20

40

60

80

100

120

f (x, y )

A. Mohammad-Djafari,

120 20

40

60

80

g (u, v )

100

120

120 20

40

60

80

100

bf IFT

Inverse problems, Deconvolution and Parametric Estimation,

120

20

40

60

80

100

120

bf Proposed method MATIS SUPELEC,

101/1

Conclusions ◮

Bayesian Inference for inverse problems



Different prior modeling for signals and images: Separable, Markovian, without and with hidden variables



Sprasity enforcing priors



Gauss-Markov-Potts models for images incorporating hidden regions and contours



Two main Bayesian computation tools: MCMC and VBA



Application in different CT (X ray, Microwaves, PET, SPECT)

Current Projects and Perspectives : ◮

Efficient implementation in 2D and 3D cases



Evaluation of performances and comparison between MCMC and VBA methods



Application to other linear and non linear inverse problems: (PET, SPECT or ultrasound and microwave imaging)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

102/1