Sparsity in signal and image processing: from modeling and

Classification of Invesion methods: Analytical, Parametric and ... imaging, Sattelite Image separation, Hyperspectral image processing ..... Multi Input Multi Output (MIMO) systems y(t) = ∫ H(t, τ) u(τ) dτ ...... (contours, region labels). ▷ Choice of ...
2MB taille 2 téléchargements 314 vues
.

Inverse problems, Deconvolution and Parametric Estimation Ali Mohammad-Djafari Laboratoire des Signaux et Syst`emes, UMR8506 CNRS-SUPELEC-UNIV PARIS SUD 11 SUPELEC, 91192 Gif-sur-Yvette, France http://lss.supelec.free.fr Email: [email protected] http://djafari.free.fr A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

1/102

Contents ◮ Invese problems examples: ◮

◮ ◮ ◮ ◮



Deconvolution, Image restoration, Image reconstruction, Fourier synthesis, ... Classification of Invesion methods: Analytical, Parametric and Non Parametric algebraic methods Regularization theory Bayesian inference for invese problems Full Bayesian with hyperparameter estimation Two main steps in Bayesian approach: Prior modeling and Bayesian computation Priors which enforce sparsity ◮ ◮ ◮





Heavy tailed: Double Exponential, Generalized Gaussian, ... Mixture models: Mixture of Gaussians, Student-t, ... Gauss-Markov-Potts

Computational tools: MCMC and Variational Bayesian Approximation Some results and applications ◮

X ray Computed Tomography, Microwave and Ultrasound imaging, Sattelite Image separation, Hyperspectral image processing, Spectrometry, CMB, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

2/102

Contents ◮ ◮

◮ ◮ ◮ ◮



Invese problems examples Classification of Invesion methods: Analytical, Parametric and Non Parametric algebraic methods Regularization theory Bayesian inference for invese problems Full Bayesian with hyperparameter estimation Two main steps in Bayesian approach: Prior modeling and Bayesian computation Priors which enforce sparsity ◮ ◮ ◮





Heavy tailed: Double Exponential, Generalized Gaussian, ... Mixture models: Mixture of Gaussians, Student-t, ... Gauss-Markov-Potts

Computational tools: MCMC and Variational Bayesian Approximation Applications: X ray Computed Tomography, Microwave and Ultrasound imaging, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

3/102

Direct and indirect observation ◮

Direct observation of a few quantities are possible: length, time, electrical charge, number of particles



For many others, we only can measure them by transforming them. Example: Thermometer transforms variation of temeprature f to variation of length g.



Relating measurable quantity g to the desired quantity f is called Forward modeling: g = H(f ).



Predicting the measurements g if we knew the desired quantity f and the measurement system is called Forward problem.



Infering on the desired quantity f from the measurement g is called Inverse problem.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

4/102

Inverse problems : 3 main examples ◮

Example 1: Measuring variation of temperature with a therometer ◮ ◮



Example 2: Seeing outside of a body: Making an image using a camera, a microscope or a telescope ◮ ◮



f (t) variation of temperature over time g(t) variation of length of the liquid in thermometer

f (x, y) real scene g(x, y) observed image

Example 3: Seeing inside of a body: Computed Tomography usng X rays, US, Microwave, etc. ◮ ◮

f (x, y) a section of a real 3D body f (x, y, z) gφ (r) a line of observed radiographe gφ (r, z)



Example 1: Deconvolution



Example 2: Image restoration



Example 3: Image reconstruction

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

5/102

Measuring variation of temperature with a therometer ◮

f (t) variation of temperature over time



g(t) variation of length of the liquid in thermometer



Forward model: Convolution Z g(t) = f (t′ ) h(t − t′ ) dt′ + ǫ(t) h(t): impulse response of the measurement system



Inverse problem: Deconvolution Given the forward model H (impulse response h(t))) and a set of data g(ti ), i = 1, · · · , M find f (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

6/102

Measuring variation of temperature with a therometer Forward model: Convolution Z g(t) = f (t′ ) h(t − t′ ) dt′ + ǫ(t) 0.8

0.8

Thermometer f (t)−→ h(t) −→

0.6

0.4

0.2

0

−0.2

0.6

g(t)

0.4

0.2

0

0

10

20

30

40

50

−0.2

60

0

10

20

t

30

40

50

60

t

Inversion: Deconvolution 0.8

f (t)

g(t)

0.6

0.4

0.2

0

−0.2

0

10

20

30

40

50

60

t

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

7/102

Instrumentation Input f (t)



Impluse response h(t)

Output g(t)



Ideal Instrument



A linear and time invariant instrument is characterized by its impulse response h(t).



Ideal Instrument



Forward problem: f (t), h(t) −→ g(t) = h(t) ∗ f (t) Two linked problems in instrumentation:



◮ ◮

Inversion: Identification:

A. Mohammad-Djafari,

g(t) = f (t)



h(t) = δ(t)

does not exist.

does not exist.

g(t), h(t) −→ f (t) g(t), f (t) −→ h(t)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

8/102

Ex1: Isolators resistivity against lightning strike An instrument giving the possibility to apply very high voltage to simulate lightning strike 1.2 Signal réel

Tension (MV)

1 0.8 Signal restauré

0.6

Signal issu du diviseur THT

0.4 0.2 0 −0.2 0

0.5

1

1.5

2

Temps (ms)

edf– Les Renardi`eres

A. Mohammad-Djafari,

Real and Estimated

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

9/102

Ex2: Radio-astronomy yb(t)

x(t)

0.9

0.9

0.8

0.8

? =⇒

0.7 0.6 0.5 0.4 0.3 0.2

0.6 0.5 0.4 0.3 0.2

0.1

0.1

0 −0.1 0

0.7

0

100

200

300

400

500

600

700

800

900

1000

−0.1 0

100

200

300

400

500

600

700

800

900

1000

Forward model: ǫ(t)

f (t)

A. Mohammad-Djafari,



h(t)

❄ ✲ +

Inverse problems, Deconvolution and Parametric Estimation,

✲ g(t) = h(t) ∗ f (t) +

MATIS SUPELEC,

10/102

Telecommunication: transmission channel compensation ◮

Data transmission System Mo

Flot d’entre

Codeur Filtre

Dem

Modulateur

Ligne

Dmodulateur

Filtre ´ Egaliseur

Flot Dcision de sortie Dcodage

Canal



Channel Model: convolution + noise ǫ(t)

T Canal h(t)

g(t)

Squence transmise

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

Squence reue

MATIS SUPELEC,

11/102

Seeing outside of a body: Making an image with a camera, a microscope or a telescope ◮

f (x, y) real scene



g(x, y) observed image



Forward model: Convolution ZZ g(x, y) = f (x′ , y ′ ) h(x − x′ , y − y ′ ) dx′ dy ′ + ǫ(x, y) h(x, y): Point Spread Function (PSF) of the imaging system



Inverse problem: Image restoration Given the forward model H (PSF h(x, y))) and a set of data g(xi , yi ), i = 1, · · · , M find f (x, y)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

12/102

Making an image with an unfocused camera Forward model: 2D Convolution ZZ g(x, y) = f (x′ , y ′ ) h(x − x′ , y − y ′ ) dx′ dy ′ + ǫ(x, y) ǫ(x, y)

f (x, y) ✲ h(x, y)

❄ ✲ + ✲

g(x, y)

Inversion: Image Deconvolution or Restoration ? ⇐=

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

13/102

? =⇒

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

14/102

Seeing inside of a body: Computed Tomography ◮

f (x, y) a section of a real 3D body f (x, y, z)



gφ (r) a line of observed radiographe gφ (r, z)



Forward model: Line integrals or Radon Transform Z gφ (r) = f (x, y) dl + ǫφ (r) L

ZZ r,φ f (x, y) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r) =



Inverse problem: Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r), i = 1, · · · , M find f (x, y)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

15/102

Making an image of the interior of a body ◮

f (x, y) a section of a real 3D body f (x, y, z)



gφ (r) a line of observed radiographe gφ (r, z)



Forward model: Line integrals or Radon Transform Z gφ (r) = f (x, y) dl + ǫφ (r) L

ZZ r,φ f (x, y) δ(r − x cos φ − y sin φ) dx dy + ǫφ (r) =



Inverse problem: Image reconstruction Given the forward model H (Radon Transform) and a set of data gφi (r), i = 1, · · · , M find f (x, y)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

16/102

2D and 3D Computed Tomography 3D

2D Projections

80

60 f(x,y)

y 40

20

0 x −20

−40

−60

−80 −80

gφ (r1 , r2 ) =

Z

f (x, y, z) dl Lr1 ,r2 ,φ

−60

gφ (r) =

−40

Z

−20

0

20

40

60

80

f (x, y) dl

Lr,φ

Forward probelm: f (x, y) or f (x, y, z) −→ gφ (r) or gφ (r1 , r2 ) Inverse problem: gφ (r) or gφ (r1 , r2 ) −→ f (x, y) or f (x, y, z) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

17/102

Computed Tomography: Radon Transform

Forward: Inverse:

A. Mohammad-Djafari,

f (x, y) f (x, y)

−→ ←−

g(r, φ) g(r, φ)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

18/102

Microwave or ultrasound imaging Measurs: diffracted wave by the object g(r i ) Unknown quantity: f (r) = k02 (n2 (r) − 1) Intermediate quantity : φ(r)

y

Object

ZZ

r'

Gm (r i , r ′ )φ(r ′ ) f (r′ ) dr ′ , r i ∈ S D ZZ Go (r, r ′ )φ(r ′ ) f (r ′ ) dr ′ , r ∈ D φ(r) = φ0 (r) + g(r i ) =

Measurement

plane

Incident

plane Wave

x

D

Born approximation (φ(r ′ ) ≃ φ0 (r ′ )) ): ZZ Gm (r i , r ′ )φ0 (r ′ ) f (r ′ ) dr ′ , r i ∈ S g(r i ) = D

z



φ0 Discretization :   g = H(f ) g = Gm F φ −→ with F = diag(f ) φ= φ0 + Go F φ  H(f ) = Gm F (I − Go F )−1 φ0 A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

r

(φ, f )

MATIS SUPELEC,

g

19/102

Fourier Synthesis in X rayZZ Tomography

f (x, y) δ(r − x cos φ − y sin φ) dx dy

g(r, φ) =

G(Ω, φ) = F (ωx , ωy ) = F (ωx , ωy ) = G(Ω, φ) y ✻ s ■

Z

g(r, φ) exp {−jΩr} dr

ZZ

f (x, y) exp {−jωx x, ωy y} dx dy

for r





ωy = Ω sin φ ωy ✻

α



f (x, y) φ

ωx = Ω cos φ and

F (ωx , ωy )

x

φ







ωx

g(r, φ)–FT–G(Ω, φ)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

20/102

Fourier Synthesis in X ray tomography G(ωx , ωy ) =

ZZ

f (x, y) exp {−j (ωx x + ωy y)} dx dy

v 50 100

u

? =⇒

150 200 250 300 350 400 450 50

100

150

200

250

300

Forward problem: Given f (x, y) compute G(ωx , ωy ) Inverse problem: Given G(ωx , ωy ) on those lines estimate f (x, y) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

21/102

Fourier Synthesis in Diffraction tomography ωy

y ψ(r, φ)

^ f (ωx , ω y )

FT 1

2 2 1

f (x, y)

x

-k 0

k0

Incident plane wave Diffracted wave

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

22/102

ωx

Fourier Synthesis in Diffraction tomography G(ωx , ωy ) =

ZZ

f (x, y) exp {−j (ωx x + ωy y)} dx dy

v 50

100

150

u

? =⇒

200

250

300 50

100

150

200

250

300

350

Forward problem: Given f (x, y) compute G(ωx , ωy ) Inverse problem : Given G(ωx , ωy ) on those semi cercles estimate f (x, y) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

23/102

400

Fourier Synthesis in different imaging systems G(ωx , ωy ) = v

ZZ

f (x, y) exp {−j (ωx x + ωy y)} dx dy v

u

v

u

X ray Tomography

Diffraction

v

u

Eddy current

u

SAR & Radar

Forward problem: Given f (x, y) compute G(ωx , ωy ) Inverse problem : Given G(ωx , ωy ) on those algebraic lines, cercles or curves, estimate f (x, y) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

24/102

Invers Problems: other examples and applications ◮

X ray, Gamma ray Computed Tomography (CT)



Microwave and ultrasound tomography



Positron emission tomography (PET)



Magnetic resonance imaging (MRI)



Photoacoustic imaging



Radio astronomy



Geophysical imaging



Non Destructive Evaluation (NDE) and Testing (NDT) techniques in industry



Hyperspectral imaging



Earth observation methods (Radar, SAR, IR, ...)



Survey and tracking in security systems

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

25/102

Computed tomography (CT) A Multislice CT Scanner Fan beam X−ray Tomography −1

−0.5

0

0.5

g(si ) = 1

Source positions

−1

−0.5

A. Mohammad-Djafari,

0.5

f (r) dli + ǫ(si )

Li

Detector positions

0

Z

1

Discretization g = Hf + ǫ

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

26/102

Positron emission tomography (PET)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

27/102

Magnetic resonance imaging (MRI) Nuclear magnetic resonance imaging (NMRI), Para-sagittal MRI of the head

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

28/102

Radio astronomy (interferometry imaging systems) The Very Large Array in New Mexico, an example of a radio telescope.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

29/102

General inverse problems

H

(

model

g

,

measured data

f

,

unknown quantity

z intermediate quantity

,

ǫ )

=

errors and noise

Particular cases: • Implicite model linking f and z :

 g = H1 (f , z) + ǫ H2 (f , z) = 0

• Simple non linear model:

g = H(f ) + ǫ

• Linear model with additive noise:

g = Hf + ǫ

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

30/102

0

Time evolution of liquid-solid fusion interface

Solid :

∂Ts ∂t ∂Tl ∂t

  2 2 = αs ∂∂xT2s + ∂∂xT2s   2 2 = αl ∂∂xT2l + ∂∂xT2l

Liquid : Energy ∂Tl s conservation ks ∂T v .~n ∂n − kl ∂n = ρLf ~ ~v : speed of solid-liquid interface ~n : normal vector on the interface Observed quantity : Unknown quantity : Intermediate uknown quantity:

A. Mohammad-Djafari,

T1

L

Ts (x, y, t)

solid phase

solid-liquid interface

......

S(x, y, t)

Tl (x, y, t)

y liquid phase

T0

0 x

∂Tl (x,0,t) ∂t

heat flux on the heating surface ∂Ts (x,0,t) ∂t solid-liquid surface evolution S(x, y, t) temperature field Ts (x, y, t) et Tl (x, y, t)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

31/102

General formulation of inverse problems ◮

General non linear inverse problems: g(s) = [Hf (r)](s) + ǫ(s),



Linear models: g(s) =

Z

r ∈ R,

s∈S

f (r) h(r, s) dr + ǫ(s)

If h(r, s) = h(r − s) −→ Convolution. ◮

Discrete data:Z g(si ) = h(si , r) f (r) dr + ǫ(si ),

i = 1, · · · , m



Inversion: Given the forward model H and the data g = {g(si ), i = 1, · · · , m)} estimate f (r)



Well-posed and Ill-posed problems (Hadamard): existance, uniqueness and stability



Need for prior information

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

32/102

General formulation of inverse problems F

G

H : F 7→ G

Im(

f g 0

Ker(H) f1

g1

f2

g2

H ∗ : G 7→ F < H ∗ g, f >=< g, Hf > ∀f ∈ F, ∀g ∈ G

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

33/102

Inverse problems scientific communities Two communities working on Inverse problems: ◮

Mathematical departments: Analytical methods: Existance and Uniqueness Differential equations, PDE



Engineering and Computer sciences: Algebraic methods: Discretization, Uniqueness and Stability Integral equations, Discretization using Moments method, Galerkin, ...

Two examples: ◮

Deconvolution: Inverse filtering and Wiener filtering



X ray Computed Tomography: Radon transform: Direct Inversion or Filtered Backprojection methods

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

34/102

Differential Equation, State Space and Input-Output A simple electric system

— R ———–— | f (t) ↑ x(t) ↑ C | ————–—–—

↑ g(t)

∂x(t) + x(t), RC = 1 ∂t Differential Equation Modelling ∂x(t) + x(t) = f (t), x(t) = g(t) ∂t State Space Modelling  ∂x(t) = −x(t) + f (t) ∂t g(t) = x(t) f (t) = R i(t) + vc (t) = RC





Input-Output Modelling  1 pX(p) = −X(p) + F (p) → X(p) = p+1 F (p) ∂t = −x(t) + f (t) → g(t) = x(t) = h(t) ∗ f (t), h(t) = exp {−t} g(t) = x(t) ◮

 ∂x(t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

35/102

A more complex electric system example — R1 ————— — R2 ——————— | | f (t) ↑ x2 (t) ↑ C1 x1 (t) ↑ C2 | | —————————————————— f (t) =

∂x2 (t) + x2 (t), ∂t

x2 (t) =

↑ g(t)

∂x1 (t) + x1 (t) ∂t

2

◮ ◮



x1 (t) 1 (t) + 2 ∂x∂t Differential Equation model: ∂ ∂t + x1 (t) = f (t) 2 State space model  " #      ∂x1 (t)  −1 1 x1 (t) 0  ∂t  = f (t) +  ∂x2 (t) 0 −1 x2 (t) 1 ∂t    1   = x1 (t)  g(t) 0

Input-Output Model: g(t) = h(t) ∗ f (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

36/102

Design/Control Inverse problems examples Simple Electrical system: a



x(0) = x0 ,

g(t) = x(t)

Design: θ = a = RC ◮ ◮



∂x(t) + x(t) = f (t), ∂t

Forward: Given θ = a and f (t), t > 0, find x(t), t > 0 Inverse: Given x(t) and f (t) find θ = a

Control: f (t) ◮ ◮

Forward: Given θ = a and f (t), t > 0, find x(t), t > 0 Inverse: Given θ = a and x(t), t > 0, find f (t)

More complex Electrical system: f (t) = b

∂x2 (t) + x2 (t), ∂t

x2 (t) = a

∂x1 (t) + x1 (t), ∂t

g(t) = x1 (t)

θ = (a = R1 C1 , b = R2 C2 ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

37/102

Design/Control Inverse problems examples Mass-spring-dashpot system m



∂x(t) ∂ 2 x(t) + k = F (t), +c 2 ∂t ∂t

∂x (0) = v0 ∂t

Design: θ = (m, c, k) ◮





x(0) = x0 ,

Forward: Given θ = (m, c, k), x0 , v0 and F (t), t > 0, find x(t), t > 0 Inverse: Given x(t) for t > 0, v0 , F (t) find θ = (m, c, k)

Control: F (t) ◮



Forward: Given θ = (m, c, k), x0 , v0 and F (t), t > 0, find x(t), t > 0 Inverse: Given θ = (m, c, k), v0 and x(t), t > 0, find F (t)

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

38/102

Input-Output model ◮

Linear Systems ◮





Single Input Single Output (SISO) systems Z y(t) = h(t, τ ) u(τ ) dτ

Multi Input Multi Output (MIMO) systems Z y(t) = H(t, τ ) u(τ ) dτ

Linear Time Invariant System ◮

SISO Convolution y(t) = h(t) ∗ u(t) =



MIMO Convolution y(t) =



Z

Z

h(t − τ ) u(τ ) dτ

H(t − τ ) u(τ ) dτ 

. . Impulse response h(t) or H(t) =  . hij (t) . .

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

 . .  .

MATIS SUPELEC,

39/102

State space model: Continuous case Dynamic systems: ◮

Single Input Single Output (SISO) system:  x(t) ˙ = A x(t) + B u(t) State equation y(t) = C x(t) + D v(t) Observation equation



Multiple Input Multiple Output (MIMO) system:  ˙ x(t) = H x(t) + B u(t) State equation y(t) = C x(t) + D v(t) Observation equation H, B, C and D are the matrices of the system.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

40/102

Analytical methods (mathematical physics) g(si ) =

Z

h(si , r) f (r) dr + ǫ(si ), i = 1, · · · , m Z g(s) = h(s, r) f (r) dr Z w(s, r) g(s) ds fb(r) =

w(s, r) minimizing a criterion: 2

2 Z

Q(w(s, r)) = g(s) − [H fb(r)](s) = g(s) − [H fb(r)](s) ds 2 2 Z Z b = g(s) − h(s, r) f (r) dr ds 2 Z Z Z h(s, r)w(s, r) g(s) ds dr ds = g(s) −

Trivial solution: A. Mohammad-Djafari,

h(s, r)w(s, r) = δ(r)δ(s)

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

41/102

Analytical methods ◮

Trivial solution: w(s, r) = h−1 (s, r) Example: Fourier Transform: Z g(s) = f (r) exp {−js.r} dr h(s, r) = exp {−js.r} −→ w(s, r) = exp {+js.r} Z ˆ g(s) exp {+js.r} ds f (r) =



Known classical solutions for specific expressions of h(s, r): ◮ ◮

1D cases: 1D Fourier, Hilbert, Weil, Melin, ... 2D cases: 2D Fourier, Radon, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

42/102

Deconvolution: Analytical methods Time domain Forward model: g(t) = h(t) ∗ f (t) + ǫ(t) ǫ(t) ❄

f (t) ✲ h(t) ✲ + ✲

g(t)

Deconvolution: g(t) → w(t) =

1 } IF T { H(ω)

→ fb(t)

Deconvolution: g(t) → W (ω) → fb(t) A. Mohammad-Djafari,

Fourier domain G(ω) = H(ω) F (ω) + E(ω) E(ω) ❄

F (ω)✲ H(ω) ✲ + ✲

G(ω)

Inverse filtering b (ω) G(ω) → 1 → F H(ω)

Wiener filtering

G(ω) →

H ∗ (ω) S (ω) |H(ω)|2 + S ǫ (ω)

Inverse problems, Deconvolution and Parametric Estimation,

f

b (ω) →F

MATIS SUPELEC,

43/102

Deconvolution example 0.6

1.8 1.6

0.5 1.4 0.4

1.2 1

0.3

0.8 0.2 0.6 0.4

0.1

0.2 0 0 −0.2

50

100

150

200

250

300

−0.1

50

100

f (t) 1.8

1.8

1.6

1.6

1.4

1.4

1.2

1.2

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0 −0.2

150

200

250

300

200

250

300

g(t)

0

50

100

150

200

Inverse Filtering A. Mohammad-Djafari,

250

300

−0.2

50

100

150

Wiener Filtering

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

44/102

Analytical Inversion methods S•

y ✻

r



f (x, y) φ



x

•D g(r, φ) Radon Transform: ZZ g(r, φ) = f (x, y) δ(r − x cos φ − y sin φ) dx dy D   Z π Z +∞ ∂ 1 ∂r g(r, φ) f (x, y) = − 2 dr dφ 2π 0 −∞ (r − x cos φ − y sin φ) A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

45/102

X ray Tomography 

y



Z

= g(r, φ) = − ln f (x, y) dl Lr,φ ZZ g(r, φ) = f (x, y) δ(r − x cos φ − y sin φ) dx dy

150

100

I I0

f(x,y)

50

D

0

x

−50

−100

f (x, y)✲

−150

−150

phi

−100

−50

0

50

100

✲g(r, φ)

RT

150

60

p(r,phi)

40 315

IRT ?

270 225

20

0

180

−20

135

=⇒

90 45

−60

0 r

A. Mohammad-Djafari,

−40

−60

−40

−20

Inverse problems, Deconvolution and Parametric Estimation,

0

20

40

60

MATIS SUPELEC,

46/102

Analytical Inversion methods S•

y ✻

r



f (x, y) φ



x

Radon:

ZZ

•D Z g(r, φ) = f (x, y) dl L

f (x, y) δ(r − x cos φ − y sin φ) dx dy   Z π Z +∞ ∂ 1 ∂r g(r, φ) f (x, y) = − 2 dr dφ 2π 0 −∞ (r − x cos φ − y sin φ) g(r, φ) =

D

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

47/102

Filtered Backprojection method   Z π Z +∞ ∂ 1 ∂r g(r, φ) f (x, y) = − 2 dr dφ 2π 0 −∞ (r − x cos φ − y sin φ) ∂g(r, φ) ∂r Z ∞ 1 g(r, φ) ′ Hilbert TransformH : g1 (r , φ) = dr π 0 (r − r ′ ) Z π 1 g1 (r ′ = x cos φ + y sin φ, φ) dφ Backprojection B : f (x, y) = 2π 0 Derivation D :

g(r, φ) =

f (x, y) = B H D g(r, φ) = B F1−1 |Ω| F1 g(r, φ) • Backprojection of filtered projections: g(r,φ)

−→

FT

F1

A. Mohammad-Djafari,

−→

Filter

|Ω|

−→

IFT

F1−1

g1 (r,φ)

−→

Inverse problems, Deconvolution and Parametric Estimation,

Backprojection B MATIS SUPELEC,

f (x,y)

−→

48/102

Limitations : Limited angle or noisy data

60

60

60

60

40

40

40

40

20

20

20

20

0

0

0

0

−20

−20

−20

−20

−40

−40

−40

−40

−60

−60

−60

−60

−40

−20

0

20

Original

40

60

−60

−40

−20

0

20

40

64 proj.

60

−60

−60 −40

−20

0

20

40

16 proj.



Limited angle or noisy data



Accounting for detector size



Other measurement geometries: fan beam, ...

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

60

−60

−40

−20

0

20

40

8 proj. [0, π/2]

MATIS SUPELEC,

49/102

60

Limitations : Limited angle or noisy data −60

−60

−60

−40

−40

−20

−20

−150

−40 −100

f(x,y)

y

−20 −50

0

x

0

50

20

0

0

20

20

40

40

100

40 150

60

60 −60

−40

−20

0

20

40

60

−150

−100

−50

0

50

100

60 −60

150

−40

−20

0

20

40

60

−60

−60

−40

−40

−20

−20

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60

−150

−100

f(x,y)

y

−50

x

0

50

0

0

20

20

40

40

100

150

60 −150

Original

A. Mohammad-Djafari,

−100

−50

0

50

Data

100

150

60 −60

−40

−20

0

20

40

60

Backprojection Filtered Backprojection

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

50/102

Parametric methods ◮

◮ ◮

f (r) is described in a parametric form with a very few number b which minimizes a of parameters θ and one searches θ criterion such as: P Least Squares (LS): Q(θ) = i |gi − [H f (θ)]i |2 P Robust criteria : Q(θ) = i φ (|gi − [H f (θ)]i |) with different functions φ (L1 , Hubert, ...).



Likelihood :

L(θ) = − ln p(g|θ)



Penalized likelihood :

L(θ) = − ln p(g|θ) + λΩ(θ)

Examples: ◮



Spectrometry: f (t) modelled as a sum og gaussians P f (t) = K a N (t|µk , vk ) θ = {ak , µk , vk } k k=1

Tomography in CND: f (x, y) is modelled as a superposition of circular or elleiptical discs θ = {ak , µk , rk }

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

51/102

Non parametric Zmethods g(si ) =



h(si , r) f (r) dr + ǫ(si ),

i = 1, · · · , M

f (r) is assumed to be well approximated by N X f (r) ≃ fj bj (r) j=1

with {bj (r)} a basis or any other set of known functions Z N X g(si ) = gi ≃ fj h(si , r) bj (r) dr, i = 1, · · · , M j=1

g = Hf + ǫ with Hij = ◮ ◮

Z

h(si , r) bj (r) dr

H is huge dimensional b = arg min {Q(f )} with LS solution : f f P 2 Q(f ) = i |gi − [Hf ]i | = kg − Hf k2 does not give satisfactory result.

A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

52/102

Algebraic methods: Discretization Hij

y ✻

S•

r



f1 fj

f (x, y)

gi

φ



•D g(r, φ) g(r, φ) =

Z

fN

x

P f b (x, y) j j j 1 if (x, y) ∈ pixel j bj (x, y) = 0 else f (x, y) =

f (x, y) dl

gi =

L

N X

Hij fj + ǫi

j=1

g = Hf + ǫ A. Mohammad-Djafari,

Inverse problems, Deconvolution and Parametric Estimation,

MATIS SUPELEC,

53/102

Inversion: Deterministic methods Data matching ◮





Observation model gi = hi (f ) + ǫi , i = 1, . . . , M −→ g = H(f ) + ǫ Misatch between data and output of the model ∆(g, H(f ))

Examples:

– LS

b = arg min {∆(g, H(f ))} f f

∆(g, H(f )) = kg − H(f )k2 =

X

|gi − hi (f )|2

i

– Lp – KL

p

∆(g, H(f )) = kg − H(f )k = ∆(g, H(f )) =

X i



gi ln

gi hi (f )

X

|gi − hi (f )|p ,

1