Thank you for visiting my website. I highly recommend you to

Oct 5, 2016 - It will help you better understand my researches. Feel free to ask me any questions. Enjoy your reading :) ..... Six points contact (pyramid).
24MB taille 2 téléchargements 279 vues
Thank you for visiting my website. I highly recommend you to download this presentation here. It contains many videos that can be launched by clicking on some images on the presentation. It will help you better understand my researches. Feel free to ask me any questions. Enjoy your reading :)

Arthur Coré

Dynamic fracture of composite hollow spheres Experimental and numerical approach

May 10, 2016 5th International Carbon Composites Conference Arcachon A. C ORÉ, J.B. KOPP, P. V IOT, F. DAU, J.L. C HARLES Arts et Métiers ParisTech, I2M-DUMAS, UMR 5295 CNRS, 33400 Talence, France

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Objective Industrial context

Objective Introduction Compression tests

SAMBA project : Shock Absorber Material for Birdshield Application Technological solution Hollow spheres Aim : To study the energy dissipation mechanisms (fracture, friction...) under dynamic solicitations.

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

2 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

3

Numerical modelling

4

Multi-impacts

5

Conclusions and perspectives

Objective Introduction Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

3 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

3

Numerical modelling

4

Multi-impacts

5

Conclusions and perspectives

Objective Introduction Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

4 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Introduction : structural characteristics

Objective Introduction

Hollow spheres made by ATECA (french PME, Montauban) Geometry 1 to 30 mm in diameter Constitutive material epoxy resin with aggregates Mechanical behaviour elastic-brittle, subjected to dynamic crack propagation

Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

5 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Introduction : structural characteristics

Objective Introduction Compression tests Numerical modelling Multi-impacts

Hollow spheres made by ATECA (french PME, Montauban) Geometry 1 to 30 mm in diameter Constitutive material epoxy resin with aggregates Mechanical behaviour elastic-brittle, subjected to dynamic crack propagation

Methodology Characterization of a hollow sphere in quasi-static and dynamic compression Numerical model of one hollow sphere Towards a macroscopic model : multi impacts modelling and experiments

Conclusions and perspectives

A. C ORÉ

5 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

Objective

Quasi-static Dynamic

Introduction Compression tests

3

Numerical modelling

4

Multi-impacts

5

Conclusions and perspectives

Quasi-static Dynamic

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

6 / 24

05/10/2016 IC3 2016 Arcachon

Dynamic fracture of composite hollow spheres

Compression tests : Quasi-static Experimental procedure

Objective Introduction

Uni-axial compressive tests conducted on one classical compression machine at room temperature Geometry Hollow sphere of 30 mm in diameter and 1.2 mm thick Compressive velocity 5 mm/min

Compression tests Quasi-static Dynamic

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

7 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Compression tests : Quasi-static Observations

Objective Introduction

Elastic-brittle behaviour Elastic phase with failure→ dynamic fracture Significant dispersion → geometrical defaults of hollow spheres induced by the manufacturing process

Compression tests Quasi-static Dynamic

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

7 / 24

05/10/2016 IC3 2016 Arcachon

Dynamic fracture of composite hollow spheres

Compression tests : Dynamic Experimental procedure

Objective Introduction

Uni-axial compressive tests conducted on a fly wheel machine at room temperature Geometry Hollow sphere of 30 mm in diameter and 1.2 mm thick Compressive velocity 2 m/s

Compression tests Quasi-static Dynamic

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

8 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Compression tests : Dynamic Observations

Objective Introduction

Elastic-brittle behaviour but with : Increase of rigidity and force at failure Fmax + 50% Greater dispersion → dynamic effects

Compression tests Quasi-static Dynamic

Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

8 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

3

Numerical modelling

Objective Introduction Compression tests

Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Numerical modelling Discrete Element Method Cohesive beams

4

Multi-impacts

5

Conclusions and perspectives

Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

9 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Discrete Element Method Avantages

Objective

Adapted to dynamic simulations (explicit scheme) Natural dynamic fracture

Introduction

Open source

Compression tests Numerical modelling Discrete Element Method

Principles

Cohesive beams Elastic calibration

undeformable elements interacting

Failure criterion Results

Multi-impacts

Interactions : contacts, springs, potential forces, beams

Conclusions and perspectives

A. C ORÉ

10 / 24

05/10/2016 IC3 2016 Arcachon

Dynamic fracture of composite hollow spheres

Cohesive beams Discrete element method to simulate continuous material

Objective Introduction Compression tests

linear elastic macroscopic mechanical behaviour Calibration procedure : microscopic Young Modulus and radius ratio (RRµ = beams

Rbeam RDE

) of

Failure criterion based on the virial stress tensor

Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

11 / 24

05/10/2016 IC3 2016 Arcachon

Dynamic fracture of composite hollow spheres

Elastic calibration

Objective Introduction Compression tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

We find RRµ = 0.3 and Eµ = 356 GPa

A. C ORÉ

12 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Failure criterion Characterization

Objective Introduction Compression tests Numerical modelling

Compression tests of composite cylinders (ASTM D695)

Temperature : −40◦ C to +80◦ C Compression velocity : 5 mm/min to 500 mm/min (Hopkinson bars tests planned) Identification of Ree-Eyring law constants

Qβ −1 Qα σmax = Aα (log (2Cα ) ˙ + ) + Aβ sinh (Cβ ˙ exp ( )) T RT RT

(1)

Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

13 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Failure criterion Brittle calibration

Objective Introduction

Choice of the failure criterion : principal stress, hydrostatic stress Consideration of the strain rate dependency Validation

Compression tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

14 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Results Numerical model of a hollow sphere

Objective

Random packing creation of hollow spheres made of thousands of elements (10 000 to 100 000 elements)

Dynamic compression tests at 2 m/s Introduction

Quasi-static compression tests at low velocity

Compression tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

15 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Objective

Results

Micro cracking micro cracks prior the main failure are taken into account

Introduction Compression tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

A. C ORÉ

16 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Results High velocity impact

Objective

Experimental procedure : gas gun, force sensor, high speed camera (150k fps) Velocity range : 50 to 150 m/s (maximum of 60 bars)

Introduction

Good qualitative results for high velocity impact

Compression tests Numerical modelling Discrete Element Method Cohesive beams Elastic calibration Failure criterion Results

Multi-impacts Conclusions and perspectives

F IGURE – From left to right : experimental, strain-rate dependent model and strain rate independent model

A. C ORÉ

17 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

3

Numerical modelling

4

Multi-impacts

5

Conclusions and perspectives

Objective Introduction Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

18 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Why multi-impacts tests ? Establishment of a brittle hollow sphere constitutive law dependent on :

Number and force of contacts Objective Introduction

Compression velocity Geometry of the hollow sphere

Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

19 / 24

05/10/2016

Dynamic fracture of composite hollow spheres

IC3 2016 Arcachon

Validation on simple multi-impacts test Objective Introduction

Two points contact (column) Six points contact (pyramid) Quasi-static and dynamic compression tests

Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

A. C ORÉ

20 / 24

05/10/2016

Dynamic fracture of composite hollow spheres

IC3 2016 Arcachon

Validation on simple multi-impacts test Objective

Two points contact (column) Six points contact (pyramid)

Introduction

Quasi-static and dynamic compression tests

Compression tests Numerical modelling Multi-impacts Conclusions and perspectives

F IGURE – Dynamic tests (2 m/s)

A. C ORÉ

20 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Outline 1

Introduction

2

Compression tests

3

Numerical modelling

4

Multi-impacts

5

Conclusions and perspectives

Objective Introduction Compression tests Numerical modelling Multi-impacts

Conclusions Perspectives

Conclusions and perspectives Conclusions Perspectives

A. C ORÉ

21 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Conclusions Experimental

Objective

Sensitivity to strain rate → increase of the force at failure Energy dissipated mainly by dynamic fracture

Introduction Compression tests Numerical modelling

Numerical Fracture taken into account by the Discrete Element Method

Good qualitative results Strain rate sensitivity Ability to conduct multi-impact tests

Multi-impacts Conclusions and perspectives Conclusions Perspectives

A. C ORÉ

22 / 24

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Perspectives Macroscopic model

Objective Introduction Compression tests

One sphere becomes one element in the DEM model Contact law between spheres / elements given by a parametric analysis conducted on the multi impact model Contact forces, impact velocity between spheres, geometry of the spheres (thickness, diameter), temperature... → variables of the contact law Modelling of a soft impact on an assembly of hollow spheres

Numerical modelling Multi-impacts Conclusions and perspectives Conclusions Perspectives

F IGURE – Impact of Gelatin (v= 50 m/s), numerical and experimental results (in progress)

A. C ORÉ

23 / 24

Thanks for your attention Any questions ? Arthur C ORÉ

PhD candidate

Arts & Métiers ParisTech - Centre de Bordeaux - Talence, I2M Dynamic department Esplanade des Arts et Métiers, 33400 Talence [email protected]

Dynamic fracture of composite hollow spheres

05/10/2016 IC3 2016 Arcachon

Détermination du facteur de correction dynamique sur sphères creuses 1. Validation sur plaque Appendix

Mise sous tension d’une plaque (déplacement imposé) Rupture manuelle des poutres à vitesse imposée (0.01 Cr à 1 Cr ) Bilan d’énergie, J-Integral, CTOD Comparaison et validation avec le résultat analytique de Broberg sur plaque semi-infinie 2. Application sur sphères creuses par la même méthodologie

Crack propagation on a discrete element plate (from right to left)

A. C ORÉ

Appendix

05/10/2016

Dynamic fracture of composite hollow spheres

IC3 2016 Arcachon

Modèle macroscopique d’un assemblage de sphères creuses 1. Mise en place d’essais numériques et expérimentaux de multi-contacts Appendix

2. Analyse paramétrique numérique dépendant de la géométrie des sphères et de leurs chargements 3. Modélisation macroscopique : une sphère devient un élément 4. Essais de choc mou sur une éprouvette de type bouclier

A. C ORÉ

Appendix