TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL

For applications that require higher output drive and wider input ..... VOL. Low-level output voltage. VIC = 2 5 V. IOL = 1 mA. 25°C. 0.2. 0.3. V. VIC = 2.5 V, ... SR. Slew rate at unity gain. VO = 1.5 V to 3.5 V,. RL = 50 kΩ‡,. 25°C. 0.35. 0.55. V/µs.
948KB taille 0 téléchargements 276 vues
TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

D D D D D D

Output Swing includes Both Supply Rails Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power . . . 500 µA Max Common-Mode Input Voltage Range Includes Negative Rail

D D D D

Low Input Offset Voltage 950 µV Max at TA = 25°C (TLC2262A) Macromodel Included Performance Upgrade for the TS27M2/M4 and TLC27M2/M4 Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control/Print Support Qualification to Automotive Standards

description

60 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz

The TLC2262 and TLC2264 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier.

EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

50

VDD = 5 V RS = 20 Ω TA = 25°C

40

30

20

10

The TLC226x, exhibiting high input impedance 0 and low noise, are excellent for small-signal 10 102 103 104 conditioning for high-impedance sources, such as f – Frequency – Hz piezoelectric transducers. Because of the micropower dissipation levels, these devices work well Figure 1 in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright  2001, Texas Instruments Incorporated

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

1

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262 AVAILABLE OPTIONS PACKAGED DEVICES TA

VIOmax AT 25°C

SMALL OUTLINE (D)

CHIP CARRIER (FK)

CERAMIC DIP (JG)

PLASTIC DIP (P)

TSSOP (PW)

CERAMIC FLATPACK (U)

0°C to 70°C

2.5 mV

TLC2262CD





TLC2262CP

TLC2262CPW



– 40°C to 125°C

950 µ µV 2.5 mV

TLC2262AID TLC2262ID

— —

— —

TLC2262AIP TLC2262IP

TLC2262AIPW —

— —

– 40°C to 125°C

950 µ µV 2.5 mV

TLC2262AQD TLC2262QD

— —

— —

— —

— —

— —

– 55°C to 125°C

950 µV 2.5 mV

— —

TLC2262AMFK TLC2262MFK

TLC2262AMJG TLC2262MJG

— —

— —

TLC2262AMU TLC2262MU

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C. TLC2264 AVAILABLE OPTIONS PACKAGED DEVICES TA

VIOmax AT 25°C

SMALL OUTLINE (D)

CHIP CARRIER (FK)

CERAMIC DIP (J)

PLASTIC DIP (N)

TSSOP (PW)

CERAMIC FLATPACK (W)

0°C to 70°C

2.5 mV

TLC2264CD





TLC2264CN

TLC2264CPW



– 40°C to 125°C

950 µ µV 2.5 mV

TLC2264AID TLC2264ID

— —

— —

TLC2264AIN TLC2264IN

TLC2264AIPW —

— —

– 40°C to 125°C

950 µ µV 2.5 mV

TLC2264AQD TLC2264QD

— —

— —

— —

— —

— —

– 55°C to 125°C

950 µV 2.5 mV

— —

TLC2264AMFK TLC2264MFK

TLC2264AMJ TLC2264MJ

— —

— —

TLC2264AMW TLC2264MW

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2264CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C.

2

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262C, TLC2262AC TLC2262I, TLC2262AI TLC2262Q, TLC2262AQ D, P, OR PW PACKAGE (TOP VIEW) 1

8

2

7

3

6

4

5

NC 1OUT NC VDD+ NC

VDD + 2OUT 2IN – 2IN +

NC 1IN – NC 1IN + NC

4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

NC 2OUT NC 2IN – NC

NC VDD– /GND NC 2IN+ NC

1OUT 1IN – 1IN + VDD – /GND

TLC2262M, TLC2262AM . . . FK PACKAGE (TOP VIEW)

NC – No internal connection TLC2262M, TLC2262AM . . . JG PACKAGE (TOP VIEW)

1OUT 1IN – 1IN + VDD – /GND

1

8

2

7

3

6

4

5

TLC2262M, TLC2262AM . . . U PACKAGE (TOP VIEW)

VDD + 2OUT 2IN – 2IN +

NC 1OUT 1IN – 1IN + VCC – /GND

1

10

2

9

3

8

4

7

5

6

NC VCC + 2OUT 2IN – 2IN +

NC – No internal connection

1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT

1

14

2

13

3

12

4

11

5

10

6

9

7

8

4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT

TLC2264M, TLC2264AM . . . FK PACKAGE (TOP VIEW)

1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT

1

14

2

13

3

12

4

11

5

10

6

9

7

8

4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT

1IN – 1OUT NC 4OUT 4IN –

TLC2264M, TLC2264AM . . . J OR W PACKAGE (TOP VIEW)

1IN + NC VCC + NC 2IN +

4

3 2 1 20 19 18

5

17

6

16

7

15

8

14 9 10 11 12 13

4IN + NC VCC – /GND NC 3IN +

2IN – 2OUT NC 3OUT 3IN –

TLC2264C, TLC2264AC TLC2264I, TLC2264AI TLC2264Q, TLC2264AQ D, N, OR PW PACKAGE (TOP VIEW)

NC – No internal connection

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

3

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

equivalent schematic (each amplifier) VDD +

Q3

Q6

Q9

Q12

Q14

Q16

IN + OUT

C1 IN –

R5 Q1

Q4 Q13

Q15

Q17

D1 Q2

Q5

R3

R4

Q7

Q8

Q10

Q11 R1

VDD – / GND ACTUAL DEVICE COMPONENT COUNT† TLC2262

TLC2264

Transistors

COMPONENT

38

76

Resistors

28

56

9

18

Diodes

Capacitors 3 6 † Includes both amplifiers and all ESD, bias, and trim circuitry

4

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

R2

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Supply voltage, VDD – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD– – 0.3 V to VDD+ Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C J, JG, U, and W packages . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE

TA ≤ 25°C POWER RATING

DERATING FACTOR ABOVE TA = 25°C

TA = 70°C POWER RATING

TA = 85°C POWER RATING

TA = 125°C POWER RATING

D–8

725 mW

5.8 mW/°C

464 mW

377 mW

145 mW

D–14

950 mW

7.6 mW/°C

608 mW

494 mW

190 mW

FK

1375 mW

11.0 mW/°C

880 mW

715 mW

275 mW

J

1375 mW

11.0 mW/°C

880 mW

715 mW

275 mW 210 mW

JG

1050 mW

8.4 mW/°C

672 mW

546 mW

N

1150 mW

9.2 mW/°C

736 mW

598 mW

230 mW

P

1000 mW

8.0 mW/°C

640 mW

520 mW

200 mW

PW–8

525 mW

4.2 mW/°C

336 mW

273 mW

105 mW

PW–14

700 mW

5.6 mW/°C

448 mW

364 mW

140 mW

U

700 mW

5.5 mW/°C

452 mW

370 mW

150 mW

W

700 mW

5.5 mW/°C

452 mW

370 mW

150 mW

recommended operating conditions C SUFFIX MIN Supply voltage, VDD ±

± 2.2

Input voltage range, VI Common-mode input voltage, VIC

VDD – VDD –

Operating free-air temperature, TA

0

MAX ±8 VDD + – 1.5 VDD + – 1.5 70

I SUFFIX MIN ± 2.2 VDD – VDD – – 40

POST OFFICE BOX 655303

MAX ±8 VDD + – 1.5 VDD + – 1.5 125

Q SUFFIX MIN ± 2.2 VDD – VDD – – 40

• DALLAS, TEXAS 75265

MAX ±8 VDD + – 1.5 VDD + – 1.5 125

M SUFFIX MIN ± 2.2 VDD – VDD – – 55

MAX

UNIT

±8

V

VDD + – 1.5 VDD + – 1.5

V

125

°C

V

5

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage

IIB

Input bias current

VICR

VDD ± = ± 2.5 V, RS = 50 Ω

VIC = 0, VO = 0,

RS = 50 Ω Ω,

Common mode input voltage range Common-mode

25°C

0.003

µV/mo

25°C

0.5 100 1

Low-level output voltage

Large-signal g g differential voltage g amplification

IOL = 500 µA IOL = 1

mA

VIC = 2 2.5 5V V,

IOL = 4

mA

2 5 V, V VIC = 2.5 VO = 1 V to 4 V

RL = 50 kه

VIC = 2 2.5 5V V,

100

25°C

0 to 4

Full range

0 to 3.5

25°C

IOL = 50 µA

RL = 1 Mه

Differential input resistance

µV µV/°C

|VIO| ≤ 5 mV

IOH = – 100 µA

High-level output voltage

UNIT

2

25°C

VIC = 2 2.5 5V V,

ri(d)

2500

Full range

VIC = 2.5 V,

AVD

300

Full range

IOH = – 400 µA

VOL

MAX 3000

25°C to 70°C

IOH = – 20 µA VOH

TYP

Full range

Input offset voltage long-term drift (see Note 4) Input offset current

TLC2262C MIN

25°C

VIO

IIO

TA†

– 0.3 to 4.2

pA pA

V

4.99

25°C

4.85

Full range

4.82

25°C

4.70

Full range

4.60

4.94 V 4.85

25°C

0.01

25°C

0.09

Full range

0.15 0.15

25°C

0.2

Full range

0.3

V

0.3

25°C

0.7

Full range

1 1.2

25°C

80

Full range

55

170 V/mV

25°C

550

25°C

1012





ri(c)

Common-mode input resistance

25°C

1012

ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240



CMRR

Common mode rejection ratio Common-mode

VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω

25°C

70

Full range

70

kSVR

Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage

VDD = 4.4 V to 16 V,, VIC = VDD /2, No load

25°C

80

Full range

80

IDD

Supply current

VO = 2 2.5 5V V,

No load

25°C Full range

83

dB

95 400

dB 500 500

µA

† Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

6

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262C operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR

Slew rate at unity gain

Vn

Equivalent input noise voltage

VN(PP)

Peak-to-peak equivalent input noise q voltage

In

Equivalent input noise current

THD + N

Total harmonic distortion plus noise

BOM

ts φm

TEST CONDITIONS VO = 1.5 V to 3.5 V,, CL = 100 pF‡

RL = 50 kه,

TYP

25°C

0.35

0.55

Full range

0.3

25°C

40

f = 1 kHz

25°C

12

f = 0.1 Hz to 1 Hz

25°C

0.7

f = 0.1 Hz to 10 Hz

25°C

1.3

25°C

0.6

AV = 1

Gain-bandwidth product

f = 10 kHz, CL = 100 pF‡

RL = 50 kه,

Maximum output-swing bandwidth

VO(PP) = 2 V, RL = 50 kه,

AV = 1, CL = 100 pF‡ To 0.1% 0 1%

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ ‡ RL = 50 kΩ‡,

CL = 100 pF‡

Gain margin

TLC2262C MIN

f = 10 Hz

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kه

Phase margin at unity gain

TA†

MAX

UNIT V/µs

nV/√Hz µV fA√Hz

0.017% 25°C

AV = 10

0.03% 25°C

0.71

MHz

25°C

185

kHz

64 6.4 µs

25°C 01% To 0 0.01%

14 1 14.1 25°C

56°

25°C

11

dB

† Full range is 0°C to 70°C. ‡ Referenced to 2.5 V

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

7

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage

IIB

Input bias current

VICR

VIC = 0, RS = 50 Ω

VO = 0,

2500

|VIO| ≤ 5 mV mV,

25°C

0.003

µV/mo

25°C

0.5 100 1

Maximum negative peak output voltage

Large-signal differential voltage amplification

IO = 50 µA

VIC = 0 0,

IO = 500 µA

VIC = 0 0,

IO = 1

mA

IO = 4

mA

VO = ± 4 V

–5 to 4

Full range g

–5 to 3.5

25°C

VIC = 0,

VIC = 0 0,

100

25°C RS = 50 Ω

IO = – 100 µA

RL = 50 kΩ RL = 1 MΩ

Differential input resistance

µV µV/°C

Full range

Common mode input voltage range Common-mode

UNIT

2

25°C

IO = – 400 µA

ri(d)

300

Full range

VOM + Maximum positive peak output voltage

AVD

MAX 3000

25°C to 70°C

IO = – 20 µA

VOM –

TYP

Full range

Input offset voltage long-term drift (see Note 4) Input offset current

TLC2262C MIN

25°C

VIO

IIO

TA†

25°C

4.85 4.82

25°C

4.7

Full range

4.6

25°C

V

4.94 V 4.85 – 4.99

25°C

– 4.85

Full range

– 4.85

25°C

– 4.7

Full range

– 4.7

Full range

pA

4.99

Full range

25°C

– 5.3 to 4.2

pA

–4

– 4.91 V

– 4.8 – 4.3

– 3.8

25°C

80

Full range

55

200 V/mV

25°C

1000

25°C

1012



25°C

1012



ri(c)

Common-mode input resistance

ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

220



Common mode rejection ratio CMRR Common-mode

VIC = – 5 V to 2.7 V,, VO = 0 V, RS = 50 Ω

25°C

75

Full range

75

25°C

80

Full range

80

kSVR

Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage

VDD ± = 2.2 V to ± 8 V,, VIC = 0, No load

IDD

Supply current

VO = 0 V V,

No load

25°C Full range

88

dB

95 425

dB 500 500

µA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

8

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262C operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF F

SR

Slew rate at unity gain

Vn

Equivalent input noise voltage

VN(PP)

Peak-to-peak equivalent q input noise voltage

In

Equivalent input noise current

THD + N

Total harmonic distortion pulse duration

RL = 50 kΩ

TA†

TLC2262C MIN

TYP

25°C

0.35

0.55

Full range

03 0.3

MAX

UNIT

V/µs

f = 10 Hz

25°C

43

f = 1 kHz

25°C

12

f = 0.1 Hz to 1 Hz

25°C

0.8

f = 0.1 Hz to 10 Hz

25°C

1.3

25°C

0.6

nV/√Hz µV fA√Hz

VO = ± 2.3 V, f = 20 kHz, kHz RL = 50 kΩ

AV = 1

Gain bandwidth product Gain-bandwidth

f = 10 kHz,, CL = 100 pF

RL = 50 kΩ

25°C

0 73 0.73

MHz

BOM

Maximum output-swing output swing bandwidth

VO(PP) = 4.6 V, RL = 50 kΩ,

AV = 1, CL = 100 pF

25°C

85

kHz

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF

To 0.1% 0 1%

ts

RL = 50 kΩ, kΩ

CL = 100 pF

φm

Phase margin at unity gain Gain margin

0.014% 25°C

AV = 10

0.024%

71 7.1 µs

25°C To 0.01% 0 01%

16 5 16.5 25°C

57°

25°C

11

dB

† Full range is 0°C to 70°C.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

9

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage

IIB

Input bias current

VICR

VDD ± = ± 2.5 V, RS = 50 Ω

VIC = 0, VO = 0,

2500

RS = 50 Ω Ω,

25°C

0.003

µV/mo

25°C

0.5 100 1

High-level output voltage

Low-level output voltage

Large-signal g g differential voltage g amplification

0 to 4

Full range

0 to 3.5

25°C

IOL = 50 µA IOL = 500 µA

VIC = 2 2.5 5V V,

100

25°C |VIO| ≤ 5 mV

IOH = – 100 µA

– 0.3 to 4.2

4.85

Full range

4.82

25°C

4.70

Full range

4.60

V

0.01 0.09

Full range Full range

VIC = 2 2.5 5V V,

IOL = 4

mA

Full range

VIC = 2.5 2 5 V, V VO = 1 V to 4 V

RL = 50 kه

V

4.85

25°C

mA

pA

4.94

25°C

IOL = 1

pA

4.99

25°C

VIC = 2 2.5 5V V,

RL = 1 Mه

µV µV/°C

Full range

Common mode input voltage range Common-mode

UNIT

2

25°C

VIC = 2.5 V,

AVD

300

Full range

IOH = – 400 µA

VOL

MAX 3000

25°C to 70°C

IOH = – 20 µA VOH

TYP

Full range

Input offset voltage long-term drift (see Note 4) Input offset current

TLC2264C MIN

25°C

VIO

IIO

TA†

0.15 0.15

25°C

0.2

0.3

V

0.3

25°C

0.7

1 1.2

25°C

80

Full range

55

170 V/mV

25°C

550

ri(d)

Differential input resistance

25°C

1012



ri(c)

Common-mode input resistance

25°C

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

N package

25°C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240



CMRR

Common mode rejection ratio Common-mode

VIC = 0 to 2.7 V,, RS = 50 Ω

VO = 2.5 V,,

kSVR

Supply voltage rejection ratio (∆VDD /∆VIO) Supply-voltage

VDD = 4.4 V to 16 V, VIC = VDD /2, No load

IDD

Supply current (four amplifiers)

VO = 2 2.5 5V V,

No load

25°C

70

Full range

70

25°C

80

Full range

80

25°C Full range

83

dB

95 0.8

dB 1 1

mA

† Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4. Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

10

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264C operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

SR

Slew rate at unity gain

Vn

Equivalent input noise voltage

VN(PP)

Peak-to-peak equivalent q input noise voltage

In

Equivalent input noise current

THD + N

ts φm

VO = 1 1.4 4 V to 2 2.6 6V V, CL = 100 pF F‡

RL = 50 kه,

25°C

0.35

0.55

Full range

03 0.3 40 12

f = 0.1 Hz to 1 Hz

25°C

0.7

f = 0.1 Hz to 10 Hz

25°C

1.3

25°C

0.6

AV = 1, CL = 100 pF‡ To 0.1% 0 1%

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ RL = 50 kΩ‡,

CL = 100 pF‡

POST OFFICE BOX 655303

nV/√Hz µV fA /√Hz

25°C 0.03% 25°C

0.71

MHz

25°C

185

kHz

64 6.4 µs

25°C To 0.01% 0 01%

• DALLAS, TEXAS 75265

UNIT

0.017%

AV = 10 RL = 50 kه,

MAX

V/µs

25°C

VO(PP) = 2 V, RL = 50 kه,

Gain margin † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V

TYP

25°C

Maximum output-swing bandwidth

Phase margin at unity gain

MIN

f = 1 kHz

AV = 1

Total harmonic distortion plus noise

TLC2264C

TA†

f = 10 Hz

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ f = 10 kHz, CL = 100 pF‡

Gain-bandwidth product BOM

TEST CONDITIONS

14 1 14.1 25°C

56°

25°C

11

dB

11

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER

TEST CONDITIONS

Input offset voltage

αVIO

Temperature coefficient of input offset voltage

IIB

Input bias current

VICR

300

2500

VIC = 0, RS = 50 Ω

VO = 0,

25°C

0.003

µV/mo

25°C

0.5 100

25°C

|VIO| ≤ 5 mV mV,

1

IO = 50 µA IO = 500 µA

VIC = 0 0, Maximum negative peak output voltage

Large-signal differential voltage amplification

–5 to 4

Full range g

–5 to 3.5

25°C

IO = – 400 µA VIC = 0,

4.85

Full range

4.82

25°C

4.7

Full range

4.6

25°C – 4.85

Full range

– 4.85

25°C

– 4.7 – 4.7

mA

Full range

VIC = 0 0,

IO = 4

mA

Full range

RL = 50 kΩ RL = 1 MΩ

25°C

pA

V

4.94 V 4.85 – 4.99

25°C

IO = 1

– 5.3 to 4.2

pA

4.99

25°C

VIC = 0 0,

VO = ± 4 V

100

25°C RS = 50 Ω

IO = – 100 µA

µV µV/°C

Full range

Common mode input voltage range Common-mode

UNIT

2

Full range

VOM + Maximum positive peak output voltage

AVD

MAX 3000

25°C to 70°C

IO = – 20 µA

VOM –

TYP

Full range

Input offset voltage long-term drift (see Note 4) Input offset current

TLC2264C MIN

25°C

VIO

IIO

TA†

–4

– 4.91 V

– 4.8 – 4.3

– 3.8

25°C

80

Full range

55

200 V/mV

25°C

1000

ri(d)

Differential input resistance

25°C

1012



ri(c)

Common-mode input resistance

25°C

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

25°C

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

25°C

220



N package

AV = 10 VIC = – 5 V to 2.7 V,

Common mode rejection ratio CMRR Common-mode kSVR

Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage

IDD

Supply current (four amplifiers)

25°C

75

VO = 0, RS = 50 Ω VDD ± = ± 2.2 V to ± 8 V,

Full range

75

25°C

80

VIC = 0,

No load

Full range

80

VO = 0 0,

No load

25°C Full range

88

dB

95 0.85

dB 1 1

mA

† Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

12

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264C operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

SR

Slew rate at unity gain

Vn

Equivalent input noise voltage

VN(PP)

Peak-to-peak equivalent q input noise voltage

In

Equivalent input noise current

THD + N

Total harmonic distortion plus noise

BOM

ts φm

TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF F

RL = 50 kΩ, kΩ

TLC2264C

TA†

MIN

TYP

25°C

0.35

0.55

Full range

03 0.3

MAX

UNIT

V/µs

f = 10 Hz

25°C

43

f = 1 kHz

25°C

12

f = 0.1 Hz to 1 Hz

25°C

0.8

f = 0.1 Hz to 10 Hz

25°C

1.3

25°C

0.6

nV/√Hz µV fA /√Hz

VO = ± 2.3 V, f = 20 kHz, kHz RL = 50 kΩ

AV = 1

Gain bandwidth product Gain-bandwidth

f = 10 kHz,, CL = 100 pF

RL = 50 kΩ,,

25°C

0 73 0.73

MHz

Maximum output-swing output swing bandwidth

VO(PP) = 4.6 V,, RL = 50 kΩ,

AV = 1,, CL = 100 pF

25°C

70

kHz

0 1% To 0.1%

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF kΩ RL = 50 kΩ,

CL = 100 pF

Phase margin at unity gain

Gain margin † Full range is 0°C to 70°C.

POST OFFICE BOX 655303

0.014% 25°C

AV = 10

0.024%

71 7.1 µs

25°C To 0 0.01% 01%

• DALLAS, TEXAS 75265

16 5 16.5 25°C

57°

25°C

11

dB

13

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

TEST CONDITIONS

TA†

TLC2262I MIN

25°C

MAX

300

2500

Full range

VIC = 0, RS = 50 Ω

Input offset current

VICR

RS = 50 Ω Ω,

VOH

High level output High-level voltage

0.003

0.003

µV/mo

25°C

0.5

IOH = – 400 µA VIC = 2.5 V, VOL

Low-level Low level output voltage

VIC = 2 2.5 5V V, VIC = 2 2.5 5V V,

AVD

Large signal Large-signal differential voltage amplification

VIC = 2 2.5 5V V, VO = 1 V to 4 V

IOL = 50 µA IOL = 500 µA IOL = 4

mA

0.5 150

150

800

800

1

1

pA pA pA

85°C

150

150

pA

Full range

800

800

pA

25°C

0 to 4

Full range g

0 to 3.5

25°C

IOH = – 100 µA

µV

25°C

|VIO| ≤ 5 mV

IOH = – 20 µA

950 1500

UNIT

µV/°C

25°C

Common-mode input voltage range

300

MAX

2

85°C

Input bias current

TYP

2

Full range IIB

MIN

3000

25°C to 85°C

VDD ± = ± 2.5 V, VO = 0,,

TLC2262AI

TYP

– 0.3 to 4.2

0 to 4

4.85

Full range

4.82

25°C

4.7

Full range

4.5

V

0 to 3.5 4.99

25°C

– 0.3 to 4.2

4.99

4.94

4.85

4.94 V

4.82 4.85

4.7

4.85

4.5

25°C

0.01

25°C

0.09

Full range

0.01 0.15

0.09

0.15

25°C

0.8

Full range

0.15

1

0.7

1.2 100

0.15 V

1 1.2

RL = 50 kه

25°C

80

80

170

Full range

50

RL = 1 Mه

25°C

550

550

50

V/mV

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240

240



CMRR

Common-mode rejection ratio

VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω

25°C

70

Full range

70

83

70 70

83

dB

† Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

14

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA†

TLC2262I MIN

25°C

80

Full range

80

TYP

TLC2262AI MAX

95

MIN 80

TYP

MAX

UNIT

95

kSVR

Supply-voltage y g rejection ratio (∆VDD /∆VIO)

VDD = 4 4.4 4 V to 16 V, V VIC = VDD /2,

No load

IDD

Supply current

VO = 2.5 V,

No load

SR

Slew rate at unity gain

VO = 1 1.5 5 V to 3 3.5 5V V, CL = 100 pF F‡

RL = 50 kه,

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

40

40

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.7

0.7

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

Total harmonic distortion plus noise

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kه

AV = 1

0.017%

0.017%

THD + N

0.03%

0.03%

Gain-bandwidth product

f = 50 kHz, CL = 100 pF‡

RL = 50 kه,

25°C

0 82 0.82

0 82 0.82

MHz

BOM

Maximum outputswing bandwidth

VO(PP) = 2 V,, RL = 50 kه,

AV = 1,, CL = 100 pF‡

25°C

185

185

kHz

64 6.4

64 6.4

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡

To 0.1% 0 1%

ts

14 1 14.1

14 1 14.1

RL = 50 kه,

CL = 100 pF‡

25°C

56°

56°

25°C

11

11

25°C

φm

Phase margin at unity gain

dB

80 400

Full range

500

400

500

25°C

0.35

Full range

0 25 0.25

0.55

500 0.35

0.55 V/µs

0 25 0.25 nV/√Hz

µV

fA√Hz

µs

25°C 01% To 0 0.01%

POST OFFICE BOX 655303

µA

25°C

AV = 10

Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V

500

• DALLAS, TEXAS 75265

dB

15

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

TA†

TEST CONDITIONS

TLC2262I MIN

25°C

25°C to 85°C 25°C

0.003

0.003

µV/mo

25°C

0.5

VOM –

VIC = 0 0,

IO = 4

mA

RL = 50 kΩ

pA pA

Full range

800

800

pA

1

1

pA

85°C

150

150

pA

Full range

800

800

pA

–5 to 4

4.85 4.82

25°C

4.7

Full range

4.5

25°C – 4.85

Full range

– 4.85 –4

4.94

80

Full range

50

V

4.99 4.85

4.94 V

4.82 4.85

4.7

4.85

4.5 – 4.91

– 4.99 – 4.85

– 4.91 V

– 4.85 – 4.3

– 3.8

25°C

– 5.3 to 4.2

–5 to 3.5

– 4.99

25°C

Full range

–5 to 4

4.99

25°C

25°C

– 5.3 to 4.2

–5 to 3.5

Full range

IO = 50 µA IO = 500 µA

0.5 150

25°C

IO = – 100 µA

VIC = 0 0,

µV µV/°C

|VIO| ≤ 5 mV

IO = – 400 µA

Maximum M i negative ti peak k out ut voltage output

1500 2

Full range

VIC = 0,

950

150

IO = – 20 µA M i Maximum positive iti peak k VOM + out ut voltage output

300

UNIT

85°C

Input bias current

RS = 50 Ω Ω,

MAX

2

25°C VICR

2500

TYP

VO = 0

Input offset current

Common-mode input voltage range

300

MIN

3000

25°C IIB

MAX

Full range

VIC = 0, RS = 50 Ω

TLC2262AI

TYP

–4

– 4.3

– 3.8 200

80

200

AVD

L i l diff ti l Large-signal differential voltage am lification amplification

25°C

1000

1000

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

220

220



CMRR

Common-mode rejection ratio

VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω

25°C

75

Full range

75

kSVR

Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO)

VDD = 4.4 V to 16 V,, VIC = VDD /2, No load

25°C

80

Full range

80

VO = ± 4 V

RL = 1 MΩ

V/mV

50

88

75

88

75 95

80 80

95

dB dB

† Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

16

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262I operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

TEST CONDITIONS

TA†

TLC2262I MIN

25°C

TLC2262AI

TYP

MAX

425

500

MIN

TYP

MAX

425

500

UNIT

IDD

Supply Current

VO = 2.5 V,

No load

SR

Slew rate at unity gain

9V VO = ± 1 1.9 V, CL = 100 pF F

kΩ RL = 50 kΩ,

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

43

43

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.8

0.8

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

Total harmonic distortion plus noise

VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz

AV = 1

0.014%

0.014%

THD + N

0.024%

0.024%

Gain-bandwidth product

f =10 kHz,, CL = 100 pF

RL = 50 kΩ,,

25°C

0 73 0.73

0 73 0.73

MHz

Maximum output swing output-swing bandwidth

VO(PP) = 4.6 V,, RL = 50 kΩ,

AV = 1,, CL = 100 pF

25°C

85

85

kHz

0 1% To 0.1%

71 7.1

71 7.1

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF

16 5 16.5

16 5 16.5

RL = 50 kΩ,

CL = 100 pF

25°C

57°

57°

25°C

11

11

BOM

ts

φm

Phase margin at unity gain

Full range

500

25°C

0.35

Full range

0 25 0.25

0.55

500 0.35

0.55 V/µs

0 25 0.25

fA√Hz

µs

25°C To 0 0.01% 01%

POST OFFICE BOX 655303

µV

25°C

AV = 10

Gain margin † Full range is – 40°C to 125°C.

nV/√Hz

• DALLAS, TEXAS 75265

dB

17

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

TA†

TEST CONDITIONS

TLC2264I MIN

25°C

VICR

25°C to 125°C VIC = 0, RS = 50 Ω

Input offset current

Input bias current

Common-mode input voltage range

RS = 50 Ω Ω,

High-level High level output voltage

IOH = – 100 µA

VIC = 2.5 V, Low-level Low level output voltage

VIC = 2 2.5 5V V, VIC = 2 2.5 5V V,

AVD

Large-signal Large signal differential amplification voltage am lification

VIC = 2 2.5 5V V, VO = 1 V to 4 V

IOL = 50 µA IOL = 500 µA IOL = 4

mA

300

MAX 950 1500

UNIT µV

2

µV/°C

25°C

0.003

0.003

µV/mo

25°C

0.5

0.5

85°C

150

150

Full range

800

800

1 150

150

Full range

800

800

25°C

0 to 4

Full range

0 to 3.5

– 0.3 to 4.2

0 to 4

4.85

Full range

4.82

25°C

4.7

Full range

4.5

– 0.3 to 4.2

4.99

4.94

4.85

4.94 V

4.82 4.85

4.7

4.85

4.5

25°C

0.01

25°C

0.09

Full range

0.01 0.15

0.09

0.15

25°C

pA

V

0 to 3.5 4.99

25°C

pA

1

85°C

25°C

IOH = – 400 µA

VOL

2500

TYP

2

|VIO| ≤ 5 mV

IOH = – 20 µA VOH

300

MIN

3000

25°C IIB

MAX

Full range

VDD ± =± ± 2.5 V, VO = 0,

TLC2264AI

TYP

0.8

Full range

0.15

1

0.7

1.2 100

0.15 V

1 1.2

RL = 50 kه

25°C

80

80

170

Full range

50

RL = 1 Mه

25°C

550

550

50

V/mV

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

N package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240

240



CMRR

Common-mode rejection ratio

VIC = 0 to 2.7 V, RS = 50 Ω

VO = 2.5 V,

kSVR

Supply-voltage rejection ratio (∆VDD /∆VIO)

VDD = 4.4 V to 16 V, VIC = VDD /2, No load

25°C

70

Full range

70

25°C

80

Full range

80

83

70

83

70 95

80

dB

95 dB

80

† Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

18

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

TA†

TLC2264I MIN

25°C

TLC2264AI

TYP

MAX

0.8

1

MIN

TYP

MAX

0.8

1

UNIT

IDD

Supply current (four amplifiers)

VO = 2.5 V,

No load

SR

Slew rate at unity gain

4 V to 2 6V VO = 1 1.4 2.6 V, CL = 100 pF F‡

RL = 50 kه,

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

40

40

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.7

0.7

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

Total harmonic distortion plus noise

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kه

AV = 1

0.017%

0.017%

THD + N

0.03%

0.03%

Gain-bandwidth product

f = 50 kHz, CL = 100 pF‡

RL = 50 kه,

25°C

0 71 0.71

0 71 0.71

MHz

Maximum outputswing bandwidth

VO(PP) = 2 V,, RL = 50 kه,

AV = 1,, CL = 100 pF‡

25°C

185

185

kHz

To 0.1% 0 1%

64 6.4

64 6.4

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡

14 1 14.1

14 1 14.1

RL = 50 kه,

CL = 100 pF‡

25°C

56°

56°

25°C

11

11

BOM

ts

φm

Phase margin at unity gain

Full range

1

25°C

0.35

Full range

0 25 0.25

0.55

1 0.35

0.55 V/µs

0 25 0.25

µV

fA /√Hz

µs

25°C To 0 0.01% 01%

POST OFFICE BOX 655303

nV/√Hz

25°C

AV = 10

Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V

V/µs

• DALLAS, TEXAS 75265

dB

19

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

TA†

TEST CONDITIONS

TLC2264I MIN

25°C

VICR

25°C to 125°C

VO = 0,

Input offset current

RS = 50 Ω Ω,

µV/°C

25°C

0.003

0.003

µV/mo

25°C

0.5

VOM –

Maximum negative peak out ut voltage output

IO = 500 µA

VIC = 0 0, VIC = 0 0,

AVD

Large signal differential Large-signal voltage am lification amplification

IO = 4

VO = ± 4 V

mA

RL = 50 kΩ

0.5 150

Full range

800

800

1

1

pA pA

85°C

150

150

pA

Full range

800

800

pA

25°C

–5 to 4

Full range g

–5 to 3.5 4.85

Full range

4.82

25°C

4.7

Full range

4.5

25°C – 4.85

Full range

– 4.85

Full range

–4 80

Full range

50

– 5.3 to 4.2 V

–5 to 3.5 4.94

4.99 4.85

4.94 V

4.82 4.85

4.7

4.85

4.5 – 4.91

– 4.99 – 4.85

– 4.91 V

– 4.85 – 4.3

– 3.8

25°C

RL = 1 MΩ

–5 to 4

– 4.99

25°C 25°C

– 5.3 to 4.2

4.99

25°C

IO = 50 µA

VIC = 0,

µV

2

25°C

IO = – 400 µA

950 1500

UNIT

2

|VIO| ≤ 5 mV

IO = – 100 µA

300

MAX

150

IO = – 20 µA Maximum positive peak VOM + out ut voltage output

2500

TYP

85°C

Input bias current

Common-mode input voltage range

300

MIN

3000

25°C IIB

MAX

Full range

VIC = 0, RS = 50 Ω

TLC2264AI

TYP

–4

– 4.3

– 3.8 200

80

200 V/mV

50

25°C

1000

1000

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

N package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

220

220



CMRR

Common-mode rejection ratio

VIC = – 5 V to 2.7 V, RS = 50 Ω VO = 0,

25°C

75

Full range

75

kSVR

Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO)

VDD± = ± 2.2 V to ± 8 V, VIC = VDD /2, No load

25°C

80

Full range

80

88

75

88

75 95

80 80

95

dB dB

† Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

20

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264I operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

TEST CONDITIONS

TA†

TLC2264I MIN

25°C

TLC2264AI

TYP

MAX

0.85

1

MIN

TYP

MAX

0.85

1

UNIT

IDD

Supply current (four amplifiers)

VO = 0,

No load

SR

Slew rate at unity gain

9V VO = ± 1 1.9 V, CL = 100 pF F

kΩ RL = 50 kΩ,

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

43

43

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.8

0.8

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

THD + N

Total harmonic distortion plus noise

VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz

AV = 1

Gain-bandwidth product

f =10 kHz,, CL = 100 pF

RL = 50 kΩ,,

25°C

0 73 0.73

0 73 0.73

MHz

Maximum outputswing bandwidth

VO(PP) = 4.6 V,, RL = 50 kΩ,

AV = 1,, CL = 100 pF

25°C

70

70

kHz

To 0.1% 0 1%

71 7.1

71 7.1

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF

16 5 16.5

16 5 16.5

RL = 50 kΩ,

CL = 100 pF

25°C

57°

57°

25°C

11

11

BOM

ts

φm

Phase margin at unity gain

Full range

1

25°C

0.35

Full range

0 25 0.25

0.55

1 0.35

0.55 V/µs

0 25 0.25

0.014%

0.014%

0.024%

0.024%

fA /√Hz

µs

25°C To 0 0.01% 01%

POST OFFICE BOX 655303

µV

25°C

AV = 10

Gain margin † Full range is – 40°C to 125°C.

nV/√Hz

• DALLAS, TEXAS 75265

dB

21

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER

TA†

TEST CONDITIONS

TLC2262Q, TLC2262M MIN

VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VICR

Common-mode input voltage g range g

25°C

VIC = 0, RS = 50 Ω

Low level output Low-level voltage

IOL = 50 µA

5V VIC = 2 2.5 V,

IOL = 500 µA

Large signal differential Large-signal voltage am lification amplification

5V VIC = 2 2.5 V, VO = 1 V to 4 V

IOL = 4

mA

950 1500

µV

25°C

0.003

0.003

µV/mo

25°C

0.5

0.5 800

800

1

1 800

0 to 4

– 0.3 to 4.2

800 0 to 4

0 to 3.5 35

25°C

VIC = 2.5 V,

300

UNIT

MAX

µV/°C

|VIO| ≤ 5 mV

IOH = – 100 µA

TYP

5

25°C RS = 50 Ω Ω,

MIN

5

25°C

VIC = 2 2.5 5V V,

AVD

2500

125°C

IOH = – 400 µA

VOL

300

125°C

IOH = – 20 µA High-level High level output voltage

MAX 3000

Full range

Full range

VOH

TYP

Full range

VDD ± = ± 2.5 V, VO = 0,

TLC2262AQ, TLC2262AM

4.85

Full range

4.82

25°C

4.7

Full range

4.5

4.99

4.94

4.85

4.94 V

4.82 4.85

4.7

4.85

4.5

25°C

0.01

25°C

0.09

Full range

0.01 0.15

0.09

0.15

25°C

pA

V

0 to 3.5 35 4.99

25°C

– 0.3 to 4.2

pA

0.8

Full range

0.15

1

0.7

1.2 100

0.15 V

1 1.2

RL = 50 kه

25°C

80

80

170

Full range

50

RL = 1 Mه

25°C

550

550

50

V/mV

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240

240



CMRR

Common-mode rejection ratio

VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VDD /∆VIO)

VDD = 4.4 V to 16 V, VIC = VDD /2, No load

IDD

Supply current

VO = 2 2.5 5V V,

No load

25°C

70

Full range

70

25°C

80

Full range

80

25°C Full range

83

70

83

dB

70 95

80

95

dB

80 400

500 500

400

500 500

µA

† Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

22

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262Q/M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TLC2262Q, TLC2262M

TA†

TEST CONDITIONS

RL = 50 kه,

MIN

TYP

25°C

0.35

0.55

Full range

0 25 0.25

TLC2262AQ, TLC2262AM MAX

MIN

TYP

0.35

0.55

Slew rate at unity gain

VO = 0 0.5 5 V to 3 3.5 5V V, CL = 100 pF F‡

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

40

40

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.7

0.7

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

THD + N

Total harmonic distortion plus noise

SR

BOM

ts

φm

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kه

AV = 1

Gain-bandwidth product

f = 50 kHz, CL = 100 pF‡

RL = 50 kه,

Maximum outputswing bandwidth

VO(PP) = 2 V,, RL = 50 kه,

AV = 1,, CL = 100 pF‡ 0 1% To 0.1%

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ RL = 50 kΩ‡,

CL = 100 pF‡

Phase margin at unity gain

V/µs 0 25 0.25 nV/√Hz

µV

fA√Hz

0.017%

0.017%

0.03%

0.03%

25°C

0 82 0.82

0 82 0.82

MHz

25°C

185

185

kHz

64 6.4

64 6.4

14 1 14.1

14 1 14.1

25°C

56°

56°

25°C

11

11

25°C

AV = 10

µs

25°C To 0 0.01% 01%

Gain margin † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V

POST OFFICE BOX 655303

UNIT

MAX

• DALLAS, TEXAS 75265

dB

23

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER

TA†

TEST CONDITIONS

TLC2262Q, TLC2262M MIN

VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VICR

Common-mode input voltage range

25°C

VO = 0,

Large-signal Large signal differential amplification voltage am lification

IO = 4

VO = ± 4 V

mA

RL = 50 kΩ

0.003

µV/mo

25°C

0.5

0.5 800

–5 to 4

– 5.3 to 4

800 –5 to 4

–5 to 3.5

4.82

25°C

4.7

Full range

4.5

25°C – 4.85

Full range

– 4.85 –4

4.85

80

Full range

50

pA

V

4.94 V

4.82 4.85

4.7

4.85

4.5 – 4.99

– 4.91

– 4.85

– 4.91 V

– 4.85 – 4.3

–4

– 3.8

25°C

pA

4.99

4.94

– 4.99

25°C

– 5.3 to 4.2

–5 to 3.5 4.99

Full range

Full range

1 800

4.85

25°C

800

1

25°C

RL = 1 MΩ

µV

0.003

25°C

IO = 500 µA

VIC = 0 0,

950 1500

25°C

Full range

IO = 50 µA

300

UNIT

MAX

µV/°C

|VIO| ≤ 5 mV

IO = – 100 µA

TYP

5

25°C RS = 50 Ω Ω,

MIN

5

25°C

VIC = 0 0,

AVD

2500

125°C

VIC = 0, Maximum negative peak output out ut voltage

300

125°C

IO = – 400 µA

VOM –

MAX 3000

Full range

IO = – 20 µA Maximum positive peak VOM + out ut voltage output

TYP

Full range

VIC = 0, RS = 50 Ω

TLC2262AQ, TLC2262AM

– 4.3

– 3.8 200

80

200 V/mV

50

25°C

1000

1000

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

P package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

220

220



CMRR

Common-mode rejection ratio

VIC = – 5 V to 2.7 V, VO = 0, RS = 50 Ω

25°C

75

Full range

75

kSVR

Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO)

VDD = 4.4 V to 16 V, VIC = VDD /2, No load

25°C

80

Full range

80

IDD

Supply current

VO = 0 0,

No load

25°C Full range

88

75

88

dB

75 95

80

95

dB

80 425

500 500

425

500 500

µA

† Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

24

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2262Q/M operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

TLC2262Q, TLC2262M

TA†

TEST CONDITIONS

MIN

TYP

25°C

0.35

0.55

Full range

0 25 0.25

TLC2262AQ, TLC2262AM MAX

MIN

TYP

0.35

0.55

UNIT

MAX

SR

Slew rate at unity gain

VO = ± 2 V V, CL = 100 pF F

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

43

43

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.8

0.8

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

Total harmonic distortion plus noise

VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz

AV = 1

0.014%

0.014%

THD + N

0.024%

0.024%

Gain-bandwidth product

f =10 kHz,, CL = 100 pF

RL = 50 kΩ,,

25°C

0 73 0.73

0 73 0.73

MHz

Maximum outputswing bandwidth

VO(PP) = 4.6 V,, RL = 50 kΩ,

AV = 1,, CL = 100 pF

25°C

85

85

kHz

To 0.1% 0 1%

71 7.1

71 7.1

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF

16 5 16.5

16 5 16.5

RL = 50 kΩ,

CL = 100 pF

25°C

57°

57°

25°C

11

11

BOM

ts

φm

Phase margin at unity gain

RL = 50 kΩ, kΩ

V/µs

0 25 0.25

µV

fA√Hz

25°C

AV = 10

µs

25°C To 0 0.01% 01%

Gain margin † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.

POST OFFICE BOX 655303

nV/√Hz

• DALLAS, TEXAS 75265

dB

25

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER

TA†

TEST CONDITIONS

TLC2264Q, TLC2264M MIN

VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VICR

Common-mode input voltage range

25°C

High-level output voltage

VIC = 0, RS = 50 Ω

VIC = 2 2.5 5V V,

Large-signal Large signal differential voltage am lification amplification

VIC = 2 2.5 5V V, VO = 1 V to 4 V

IOL = 4

mA

µV

0.003

0.003

µV/mo

25°C

0.5

0.5 800

800

1

1 800

0 to 4

– 0.3 to 4.2

800 0 to 4

0 to 3.5

25°C

IOL = 500 µA

950 1500

25°C

Full range

IOL = 50 µA

300

UNIT

MAX

µV/°C

|VIO| ≤ 5 mV

IOH = – 100 µA

TYP

2

25°C RS = 50 Ω Ω,

MIN

2

25°C

VIC = 2 2.5 5V V,

AVD

2500

125°C

VIC = 2.5 V, Low-level output voltage

300

125°C

IOH = – 400 µA

VOL

MAX 3000

Full range

IOH = – 20 µA VOH

TYP

Full range

VDD ± = ± 2.5 V, VO = 0,

TLC2264AQ, TLC2264AM

4.85

Full range

4.82

25°C

4.7

Full range

4.5

4.99

4.94

4.85

4.94 V

4.82 4.85

4.7

4.85

4.5

25°C

0.01

25°C

0.09

Full range

0.01 0.15

0.09

0.15

25°C

pA

V

0 to 3.5 4.99

25°C

– 0.3 to 4.2

pA

0.8

Full range

0.15

1

0.7

1.2 100

0.15 V

1 1.2

RL = 50 kه

25°C

80

80

170

Full range

50

RL = 1 Mه

25°C

550

550

50

V/mV

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

N package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

240

240



CMRR

Common-mode rejection j ratio

VIC = 0 to 2.7 V, RS = 50 Ω

VO = 2.5 V,

kSVR

Supply-voltage rejection ratio (∆VDD /∆VIO)

VDD = 4.4 V to 16 V,

IDD

Supplyy current (four amplifiers)

VO = 2 2.5 5V V,

No load

25°C

70

Full range

70

25°C

80

25°C Full range

83

70

83

dB

70 95 0.8

80 1 1

95 0.8

dB 1 1

mA

† Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

26

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264Q/M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER

TEST CONDITIONS

RL = 50 kه,

TLC2264Q, TLC2264M

TA† MIN

TYP

25°C

0.35

0.55

Full range

0 25 0.25

TLC2264AQ, TLC2264AM MAX

MIN

TYP

0.35

0.55

UNIT MAX

SR

Slew rate at unity gain

VO = 0 0.5 5 V to 3 3.5 5V V, CL = 100 pF F‡

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

40

40

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.7

0.7

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

Total harmonic distortion plus noise

VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kه

AV = 1

0.017%

0.017%

THD + N

0.03%

0.03%

Gain-bandwidth product

f = 50 kHz, CL = 100 pF‡

RL = 50 kه,

25°C

0 71 0.71

0 71 0.71

MHz

Maximum outputswing bandwidth

VO(PP) = 2 V,, RL = 50 kه,

AV = 1,, CL = 100 pF‡

25°C

185

185

kHz

To 0.1% 0 1%

64 6.4

64 6.4

Settling time

AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡

14 1 14.1

14 1 14.1

RL = 50 kه,

CL = 100 pF‡

25°C

56°

56°

Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V

11

11

BOM

ts

φm

Phase margin at unity gain

V/µs

0 25 0.25

µV

fA /√Hz

25°C

AV = 10

µs

25°C To 0 0.01% 01%

POST OFFICE BOX 655303

nV/√Hz

• DALLAS, TEXAS 75265

dB

27

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER

TEST CONDITIONS

TA†

TLC2264Q, TLC2264M MIN

VIO

Input offset voltage

αVIO

Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4)

IIO

Input offset current

IIB

Input bias current

VICR

Common-mode input voltage range

25°C

VO = 0,

2500

950 1500

µV

25°C

0.003

0.003

µV/mo

25°C

0.5

0.5 800

800

1

1 800

–5 to 4

–5 5.3 3 to 4 2 4.2

800 –5 to 4

pA pA

–5 5.3 3 to 4 2 4.2 V

Full range

–5 to 3.5 35

25°C

IO = 50 µA IO = 500 µA

VIC = 0 0,

300

UNIT

MAX

µV/°C

25°C 25 C

IO = – 100 µA

VIC = 0 0,

TYP

2

25°C

RS = 50 Ω,, |VIO| ≤ 5 mV

MIN

2

125°C

VIC = 0, VOM –

300

125°C

IO = – 400 µA

Maximum M i negative ti peak k out ut voltage output

MAX 3000

Full range

IO = – 20 µA M i Maximum positive iti peak k VOM + out ut voltage output

TYP

Full range

VIC = 0, RS = 50 Ω

TLC2264AQ, TLC2264AM

IO = 4

mA

RL = 50 kΩ

4.99

25°C

4.85

Full range

4.82

25°C

4.7

Full range

4.5

25°C – 4.85

Full range

– 4.85

Full range

4.99

4.94

4.85

–4

4.85

4.7

80

Full range

50

V 4.85

4.5 – 4.99

– 4.91

– 4.85

– 4.91 V

– 4.85 – 4.3

–4

– 3.8

25°C

4.94

4.82

– 4.99

25°C 25°C

–5 to 3.5 35

– 4.3

– 3.8 200

80

200

AVD

Large-signal L i l diff differential ti l voltage am lification amplification

25°C

1000

1000

ri(d)

Differential input resistance

25°C

1012

1012



ri(c)

Common-mode input resistance

25°C

1012

1012



ci(c)

Common-mode input capacitance

f = 10 kHz,

N package

25°C

8

8

pF

zo

Closed-loop output impedance

f = 100 kHz,

AV = 10

25°C

220

220



CMRR

Common-mode rejection ratio

VIC = – 5 V to 2.7 V, VO = 0, RS = 50 Ω

kSVR

Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO)

VDD± = ± 2.2 V to ± 8 V, VIC = VDD /2, No load

IDD

Supply y current (four amplifiers)

VO = 0 0,

VO = ± 4 V

RL = 1 MΩ

No load

25°C

75

Full range

75

25°C

80

Full range

80

25°C Full range

V/mV

50

88

75

88

dB

75 95

80

95

dB

80 0.85

1 1

0.85

1 1

mA

† Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

28

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TLC2264Q/M operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER

TEST CONDITIONS

TLC2264Q, TLC2264M

TA† MIN

TYP

25°C

0.35

0.55

Full range

0 25 0.25

TLC2264AQ, TLC2264AM MAX

MIN

TYP

0.35

0.55

UNIT

MAX

SR

Slew rate at unity gain

VO = ± 2 V V, CL = 100 pF F

Vn

Equivalent q input noise voltage

f = 10 Hz

25°C

43

43

f = 1 kHz

25°C

12

12

Peak-to-peak equivalent input noise voltage

f = 0.1 Hz to 1 Hz

25°C

0.8

0.8

VN(PP)

f = 0.1 Hz to 10 Hz

25°C

1.3

1.3

In

Equivalent input noise current

25°C

0.6

0.6

THD + N

Total harmonic distortion plus noise

VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz

AV = 1

Gain-bandwidth product

f =10 kHz,, CL = 100 pF

RL = 50 kΩ,,

25°C

0 73 0.73

0 73 0.73

MHz

Maximum outputswing bandwidth

VO(PP) = 4.6 V,, RL = 50 kΩ,

AV = 1,, CL = 100 pF

25°C

70

70

kHz

To 0.1% 0 1%

71 7.1

71 7.1

Settling time

AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF

16 5 16.5

16 5 16.5

RL = 50 kΩ,

CL = 100 pF

25°C

57°

57°

Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix.

11

11

BOM

ts

φm

Phase margin at unity gain

RL = 50 kΩ, kΩ

V/µs

0 25 0.25

0.014%

0.014%

0.024%

0.024%

µV

fA /√Hz

25°C

AV = 10

µs

25°C To 0.01% 0 01%

POST OFFICE BOX 655303

nV/√Hz

• DALLAS, TEXAS 75265

dB

29

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO

Input offset voltage

Distribution vs Common-mode input voltage

αVIO IIB/IIO

Input offset voltage temperature coefficient

Distribution

Input bias and input offset currents

vs Free-air temperature

12

VI

Input voltage range

vs Supply voltage vs Free-air temperature

13 14

VOH VOL

High-level output voltage

vs High-level output current

15

Low-level output voltage

vs Low-level output current

16, 17

VOM + VOM –

Maximum positive output voltage

vs Output current

18

Maximum negative output voltage

vs Output current

19

VO(PP)

Maximum peak-to-peak output voltage

vs Frequency

20

IOS

Short-circuit output current

vs Supply voltage vs Free-air temperature

21 22

VO

Output voltage

vs Differential input voltage

Differential gain

vs Load resistance

AVD

Large-signal differential voltage amplification

vs Frequency vs Free-air temperature

26, 27 28, 29

zo

Output impedance

vs Frequency

30, 31

CMRR

Common-mode rejection ratio

vs Frequency vs Free-air temperature

32 33

kSVR

Supply-voltage rejection ratio

vs Frequency vs Free-air temperature

34, 35 36

IDD

Supply current

vs Supply voltage vs Free-air temperature

37, 38 39, 40

SR

Slew rate

vs Load capacitance vs Free-air temperature

41 42

VO

Vn

THD + N

φm

B1

30

2–5 6, 7 8 – 11

23, 24 25

Inverting large-signal pulse response

43, 44

Voltage-follower large-signal pulse response

45, 46

Inverting small-signal pulse response

47, 48

Voltage-follower small-signal pulse response

49, 50

Equivalent input noise voltage

vs Frequency

Noise voltage (referred to input)

Over a 10-second period

53

Integrated noise voltage

vs Frequency

54

Total harmonic distortion plus noise

vs Frequency

55

Gain-bandwidth product

vs Supply voltage vs Free-air temperature

56 57

Phase margin

vs Frequency vs Load capacitance

26, 27 58

Gain margin

vs Load capacitance

59

Unity-gain bandwidth

vs Load capacitance

60

Overestimation of phase margin

vs Load capacitance

61

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

51, 52

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE

DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE

25

25 1274 Amplifiers From 2 Wafer Lots VDD± = ± 5 V TA = 25°C

20

Percentage of Amplifiers – %

Precentage of Amplifiers – %

1274 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V TA = 25°C

15

10

5

20

15

10

5

0 – 1.6

– 0.8 0 0.8 VIO – Input Offset Voltage – mV

0 – 1.6

1.6

Figure 2

DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE

16

Percentage of Amplifiers – %

Percentage of Amplifiers – %

20

2272 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V TA = 25°C

12

8

4

0 – 1.6

1.6

Figure 3

DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE 20

– 0.8 0 0.8 VIO – Input Offset Voltage – mV

– 0.8 0 0.8 VIO – Input Offset Voltage – mV

1.6

2272 Amplifiers From 2 Wafer Lots VDD ± = ± 5 V TA = 25°C

16

12

8

4

0 – 1.6

– 0.8 0 0.8 VIO – Input Offset Voltage – mV

1.6

Figure 5

Figure 4

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

31

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE

INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 VDD = 5 V RS = 50 Ω TA = 25°C

VVIO IO – Input Offset Voltage – mV

VVIO IO – Input Offset Voltage – mV

1

0.5

0

ÁÁÁ ÁÁÁ

0.5

0

ÁÁ ÁÁ ÁÁ

– 0.5

–1 –1

VDD± = ± 5 V RS = 50 Ω TA = 25°C

0

1

2

3

4

– 0.5

–1 –6 –5 –4 –3 –2 –1 0

5

VIC – Common-Mode Input Voltage – V † For curves where VDD = 5 V, all loads are referenced to 2.5 V.

4

30 128 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V P Package TA = 25°C to 125°C

Percentage of Amplifiers – %

25

20

15

10

5

128 Amplifiers From 2 Wafer Lots VDD± = ± 5 V P Package TA = 25°C to 125°C

20

15

10

5

–4 –3 –2 –1 0 1 2 3 4 αVIO – Temperature Coefficient – µV / °C

5

0 –5

–4 –3 –2 –1 0 1 2 3 4 αVIO – Temperature Coefficient – µV / °C

Figure 8

Figure 9

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

32

5

DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT †

30

Percentage of Amplifiers – %

3

Figure 7

DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT †

0 –5

2

VIC – Common-Mode Input Voltage – V

Figure 6

25

1

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

5

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT†

DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT† 35

35

128 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V N Package TA = 25°C to 125°C

25

30 Percentage of Amplifiers – %

Percentage of Amplifiers – %

30

128 Amplifiers From 2 Wafer Lots VDD ± = ± 5 V N Package TA = 25°C to 125°C

20 15 10

25 20 15 10

5

5

0

0 –5

–4

–3

–2

–1

0

1

2

3

4

–5

5

–4

αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C

–3

2

3

4

5

10

VDD± = ± 2.5 V VIC = 0 V VO = 0 RS = 50 Ω

RS = 50 Ω TA = 25°C

8 V VII – Input Voltage Range – V

IIO – Input Bias and Input Offset Currents – pA IIIB IB and IIO

1

INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

450

300 IIB

250 200 150 100

ÁÁ ÁÁ

0

Figure 11

INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE

350

–1

αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C

Figure 10

400

–2

50 IIO

6 4 2 0

| VIO | ≤ 5 mV

–2 –4 –6 –8 – 10

0 25

45 65 85 105 TA – Free-Air Temperature – °C

125

2

Figure 12

3

6 7 4 5 | VDD ± | – Supply Voltage – V

8

Figure 13

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

33

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS INPUT VOLTAGE RANGE†‡ vs FREE-AIR TEMPERATURE

HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT

5

6 VDD = 5 V V VOH OH – High-Level Output Voltage – V

VDD = 5 V

V VII – Input Voltage Range – V

4

3 | VIO | ≤ 5 mV

2

ÁÁ ÁÁ

1

ÁÁ ÁÁ

0

–1 – 75 – 55 – 35 – 15 5 25 45 65 85 TA – Free-Air Temperature – °C

105 125

5

4 TA = 125°C 3 TA = 25°C 2 TA = – 40°C 1

0 0

500 1000 1500 2000 2500 3000 | IOH| – High-Level Output Current – µA

Figure 14

LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT 1.4

VDD = 5 V TA = 25°C 1

V VOL OL – Low-Level Output Voltage – V

VOL VOL – Low-Level Output Voltage – V

1.2

VIC = 1.25 V

VIC = 0 0.8

0.6 VIC = 2.5 V 0.4

ÁÁ ÁÁ

0.2

VDD = 5 V VIC = 2.5 V

1.2

TA = 125°C 1 0.8 TA = 25°C 0.6 TA = – 40°C

TA = – 55°C

0.4 0.2 0

0 0

1

2

3

4

5

IOL – Low-Level Output Current – mA

0

1

2

3

4

5

IOL – Low-Level Output Current – mA

Figure 16

Figure 17

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

34

3500

Figure 15

LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT

ÁÁ ÁÁ ÁÁ

TA = – 55°C

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

6

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS MAXIMUM POSITIVE OUTPUT VOLTAGE† vs OUTPUT CURRENT VVOM OM ++ – Maximum Positive Output Voltage – V

VDD± = ± 5 V 5 TA = – 55°C 4 TA = 125°C 3 TA = 25°C 2 TA = – 40°C 1

0 0

500

1000 1500 2000 2500 | IO | – Output Current – µA

3000

3500

VOM – VOM – – Maximum Negative Output Voltage – V

– 3.8

6

ÁÁ ÁÁ ÁÁ

MAXIMUM NEGATIVE OUTPUT VOLTAGE† vs OUTPUT CURRENT VDD ± = ± 5 V VIC = 0 –4 TA = 125°C – 4.2

TA = 25°C

– 4.4 TA = – 40°C TA = – 55°C – 4.6

ÁÁ ÁÁ ÁÁ ÁÁ

– 4.8

–5 0

1

2 3 4 IO – Output Current – mA

SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

ÁÁ ÁÁ ÁÁ

12

10 RL = 10 kΩ TA = 25°C

VDD± = ± 5 V

8 7 6 VDD = 5 V

4 3 2 1 0 103

I OS – Short-Circuit Output Current – mA IOS

VO(PP) VO(PP) – Maximum Peak-to-Peak Output Voltage – V

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†‡ vs FREQUENCY

5

6

Figure 19

Figure 18

9

5

10 VID = – 100 mV 8 VO = 0 TA = 25°C

6 4 2 0

VID = 100 mV –2 –4

104

105

106

2

3

f – Frequency – Hz

4 5 6 7 | VDD ± | – Supply Voltage – V

8

‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Figure 20

Figure 21

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

35

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE

OUTPUT VOLTAGE‡ vs DIFFERENTIAL INPUT VOLTAGE 5

VO = 0 VDD± = ± 5 V

12

VDD = 5 V RL = 50 kΩ VIC = 2.5 V TA = 25°C

11 10 9

4 VO – Output Voltage – V

IIOS OS – Short-Circuit Output Current – mA

13

VID = – 100 mV

8 7 1 0 –1 VID = 100 mV

–2

3

2

1

–3 –4 – 75

– 50

– 25

0

25

50

75

100

0 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV

125

TA – Free-Air Temperature – °C

Figure 22

Figure 23 DIFFERENTIAL GAIN‡ vs LOAD RESISTANCE

OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

VO – Output Voltage – V

3

104 VDD± = ± 5 V VIC = 0 V RL = 50 kΩ TA = 25°C

VO(PP) = 2 V TA = 25°C Differential Gain – V/ mV

5

1

–1

103

102

VDD± = ± 5 V

VDD = 5 V

10

–3

–5 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV

1 103

Figure 24

104 105 RL – Load Resistance – kΩ

Figure 25

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

36

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

106

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE† AMPLIFICATION AND PHASE MARGIN vs FREQUENCY

ÁÁ ÁÁ ÁÁ

60

180°

VDD = 5 V CL= 100 pF TA = 25°C

135°

40 Phase Margin 20

90°

45° Gain

0



– 20

φom m – Phase Margin

AVD AVD – Large-Signal Differential Voltage Amplification – dB

80

– 45°

– 40 10 3

10 4

10 5

10 6

– 90° 10 7

f – Frequency – Hz † For curves where VDD = 5 V, all loads are referenced to 2.5 V.

Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY

ÁÁ ÁÁ ÁÁ

60

180°

VDD± = ± 5 V CL = 100 pF TA = 25°C

135°

40 Phase Margin 20

90°

45° Gain

0



– 20

– 40 10 3

φom m – Phase Margin

AVD AVD – Large-Signal Differential Voltage Amplification – dB

80

– 45°

10 4

10 5

10 6

– 90° 10 7

f – Frequency – Hz

Figure 27

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

37

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE

ÁÁ ÁÁ

104

VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD – Large-Signal Differential Voltage Amplification – V/mV

AVD AVD – Large-Signal Differential Voltage Amplification – V/mV

104

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE

RL = 1 MΩ

103

RL = 50 kΩ 102

ÁÁ ÁÁ

RL = 10 kΩ

101 – 75

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

RL = 1 MΩ 103 RL = 50 kΩ

102

RL = 10 kΩ 101 – 75 – 50

125

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

OUTPUT IMPEDANCE‡ vs FREQUENCY

OUTPUT IMPEDANCE vs FREQUENCY 1000

1000

VDD± = ± 5 V TA = 25°C z o – Output Impedance – 0 zo Ω

VDD = 5 V TA = 25°C 100

AV = 100 10 AV = 10 1

100

10

0.1 102

AV = 100

AV = 10 1

AV = 1

AV = 1

103

104 105 f – Frequency – Hz

106

0.1 102

Figure 30

103

104 105 f – Frequency – Hz

Figure 31

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

38

125

Figure 29

Figure 28

z o – Output Impedance – 0 zo Ω

VDD± = ± 5 V VIC = 0 V VO = ± 4 V

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

106

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE

COMMON-MODE REJECTION RATIO† vs FREQUENCY 90 CMRR – Common-Mode Rejection Ratio – dB

CMRR – Common-Mode Rejection Ratio – dB

100 VDD± = ± 5 V 80 VDD = 5 V 60

40

20

0 101

102

103

104

105

VDD± = ± 5 V 88

86

84 VDD = 5 V 82

80 – 75

106

f – Frequency – Hz

– 50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 32

Figure 33

SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY

SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100

VDD = 5 V TA = 25°C

KSVR k SVR – Supply-Voltage Rejection Ratio – dB

KSVR k SVR – Supply-Voltage Rejection Ratio – dB

100

80 kSVR + 60 kSVR – 40

20

ÁÁ ÁÁ ÁÁ

0

– 20 101

125

102

103

104

105

106

f – Frequency – Hz

VDD± = ± 5 V TA = 25°C 80 kSVR + 60 kSVR – 40

20

ÁÁ ÁÁ ÁÁ

0

– 20 101

Figure 34

102

103 104 f – Frequency – Hz

105

106

Figure 35

† For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

39

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS TLC2262 SUPPLY CURRENT † vs SUPPLY VOLTAGE

SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE 600

ÁÁ ÁÁ ÁÁ

VO = 0 No Load

VDD ± = ± 2.2 V to ± 8 V VO = 0

500 IDD µA I DD – Supply Current – uA

k KSVR SVR – Supply-Voltage Rejection Ratio – dB

110

105

100

TA = – 55°C 400 TA = 25°C

TA = 125°C

TA = 40°C

300

ÁÁ ÁÁ

95

200

100

90 – 75

0 – 50

– 25

0

25

50

75

100

0

125

1

TA – Free-Air Temperature – °C

Figure 36

6 2 3 4 5 | VDD ± | – Supply Voltage – V

7

8

Figure 37

TLC2264 SUPPLY CURRENT † vs SUPPLY VOLTAGE

TLC2262 SUPPLY CURRENT †‡ vs FREE-AIR TEMPERATURE

1200

600 VO = 0 No Load VDD± = ± 5 V VO = 0

500 TA = – 55°C

µA IDD I DD – Supply Current – uA

IDD µA I DD – Supply Current – uA

1000

800 TA = 125°C

TA = 25°C TA = 40°C

600

ÁÁ ÁÁ ÁÁ

400 VDD = 5 V VO = 2.5 V

300

ÁÁ ÁÁ ÁÁ

400

200

200

100

0 0

1

6 2 3 4 5 | VDD ± | – Supply Voltage – V

7

8

0 – 75

– 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C

Figure 39

Figure 38

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

40

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

125

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS TLC2264 SUPPLY CURRENT †‡ vs FREE-AIR TEMPERATURE

SLEW RATE‡ vs LOAD CAPACITANCE 1

1200 VDD ± = ± 5 V VO = 0

0.8 SR – Slew Rate – V/ v/us µs

1000 µA IDD I DD – Supply Current – uA

VDD = 5 V AV = – 1 TA = 25°C

800 VDD = 5 V VO = 2.5 V

600

ÁÁ ÁÁ

400

0.6 SR + 0.4

0.2

200

0 – 75

SR –

– 50

– 25 0 25 50 75 100 TA – Free-Air Temperature – °C

0 101

125

102 103 CL – Load Capacitance – pF

Figure 40

Figure 41

SLEW RATE†‡ vs FREE-AIR TEMPERATURE

INVERTING LARGE-SIGNAL PULSE RESPONSE‡ 5

1.2

VO VO – Output Voltage – V

SR – Slew Rate – v/uss V/ µ

1 SR – 0.8

SR +

0.6

0.4

0.2

0 – 75

104

VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1

VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A = –1 V TA = 25°C 3

2

1

0 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C

125

0

2

4

6

8

10

12

14

16

18

20

t – Time – µs

Figure 43

Figure 42

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

41

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE†

INVERTING LARGE-SIGNAL PULSE RESPONSE 5

5

VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C

VO VO – Output Voltage – V

3 2

VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C

4 VO VO – Output Voltage – V

4

1 0 –1 –2

3

2

1

–3 –4 –5

0 0

2

4

6

8 10 12 t – Time – µs

14

16

18

0

20

2

4

Figure 44

2

18

20

2.65 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C

2.6 VO VO – Output Voltage – V

VO VO – Output Voltage – V

3

16

INVERTING SMALL-SIGNAL PULSE RESPONSE†

VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C

4

8 10 12 14 t – Time – µs

Figure 45

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5

6

1 0 –1 –2 –3

2.55

2.5

2.45

–4 –5

2.4 0

2

4

6

8 10 12 t – Time – µs

14

16

18

20

0

2

Figure 46

6

8 10 12 t – Time – µs

Figure 47

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

42

4

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

14

16

18

20

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE 2.65

VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C

50

VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C

2.6 VO VO – Output Voltage – V

VO VO – Output Voltage – mV

100

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE†

0

– 50

2.55

2.5

2.45

2.4

– 100 0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

t – Time – µs

Figure 48

V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz

VO VO – Output Voltage – V

– 50

– 100 2

4

6

18

20

60

0

0

16

EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY

VDD ± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C

50

14

Figure 49

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100

8 10 12 t – Time – µs

8 10 12 t – Time – µs

14

16

18

20

50

VDD = 5 V RS = 20 Ω TA = 25°C

40

30

20

10

0 101

102

103

104

f – Frequency – Hz

Figure 51

Figure 50

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

43

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 1000

VDD± = ± 5 V RS = 20 Ω 50 TA = 25°C

750 500 Noise Voltage – nV

V n – Equivalent Input Noise Voltage – nv//Hz VN nV/ Hz

60

40

30

20

250 0 – 250 – 500

10

VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C

– 750 – 1000

0 101

102 103 f – Frequency – Hz

104

0

2

4 6 t – Time – s

Figure 52

TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY THD + N – Total Harmonic Distortion Plus Noise – %

Integrated Noise Voltage – µ V

100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C

10

1

101

102 103 f – Frequency – Hz

104

105

0.1

AV = 100

0.01 AV = 10

AV = 1 VDD = 5 V RL = 50 kΩ TA = 25°C 0.001 101

102

103 f – Frequency – Hz

Figure 54

Figure 55

† For curves where VDD = 5 V, all loads are referenced to 2.5 V.

44

10

Figure 53

INTEGRATED NOISE VOLTAGE vs FREQUENCY

0.1 100

8

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

104

105

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE

GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 1200

f = 10 kHz RL = 50 kΩ CL = 100 pF 900 TA = 25°C

VDD = 5 V f = 10 kHz CL = 100 pF Gain-Bandwidth Product – kHz

Gain-Bandwidth Product – kHz

940

860

820

780

1000

800

600

740 0

1

2

3

5

4

7

6

400 – 75

8

– 50

– 25

Figure 56

50

75

100

125

GAIN MARGIN vs LOAD CAPACITANCE 20 TA = 25°C

TA = 25°C

60°

15 Gain Margin – dB

Rnull = 100 Ω φom m – Phase Margin

25

Figure 57

PHASE MARGIN vs LOAD CAPACITANCE 75°

0

TA – Free-Air Temperature – °C

| VDD ± | – Supply Voltage – V

Rnull = 50 Ω

45°

30° Rnull = 20 Ω

50 kΩ

15° 50 kΩ VI

0° 101

Rnull = 100 Ω

10 Rnull = 50 Ω

5

– + VDD –

Rnull = 20 Ω Rnull = 10 Ω

VDD + Rnull CL

Rnull = 10 Ω Rnull = 0

10 2 10 3 CL – Load Capacitance – pF

Rnull = 0 10 4

0 101

Figure 58

10 2 10 3 CL – Load Capacitance – pF

10 4

Figure 59

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

45

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH† vs LOAD CAPACITANCE

OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE

1000

14°

ÁÁ ÁÁ

TA = 25°C 12° Overestimation of Phase Margin

B1 – Unity-Gain Bandwidth – kHz

TA = 25°C

800

600

400

Rnull = 100 Ω 10° 8° Rnull = 50 Ω 6° 4° Rnull = 10 Ω

200 101

10 2 10 3 CL – Load Capacitance – pF

10 4

0 101

Figure 60

10 2 10 3 CL – Load Capacitance – pF

Figure 61

† See application information

46

Rnull = 20 Ω



POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

10 4

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

APPLICATION INFORMATION driving large capacitive loads The TLC226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 58 and Figure 59 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 62) improves the gain and phase margins when driving large capacitive loads. Figure 58 and Figure 59 show the effects of adding series resistances of 10 Ω, 20 Ω, 50 Ω, and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ∆Θ m1

+ tan–1

ǒ

2 × π × UGBW × R

null

× C

Ǔ

L

(1)

Where :

+ improvement in phase margin UGBW + unity-gain bandwidth frequency R null + output series resistance C L + load capacitance ∆Θ m1

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 60). To use equation 1, UGBW must be approximated from Figure 60. Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 61. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load is reduced by the factor calculated in equation 2. F

+ 1 ) gm1 × R

(2) null

Where :

+ factor reducing frequency of pole g m + small-signal output transconductance (typically 4.83 × 10 – 3 mhos) R null + output series resistance F

For the TLC226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on. Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3 approximates the reduction in phase margin due to the movement of the pole associated with the load. The result of this equation can be subtracted from the result of the equation in equation 1 to better approximate the improvement in phase margin.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

47

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

APPLICATION INFORMATION driving large capacitive loads (continued) ∆Θ m2 Where :

+ tan–1

ȱȧǒ Ǔȳȧ Ȳ ȴ UGBW F × P2

– tan –1

ǒ Ǔ UGBW P2

+ reduction in phase margin UGBW + unity-gain bandwidth frequency F + factor from equation 2 P 2 + unadjusted pole (70 MHz @10 pF,

(3)

∆Θ m2

7 MHz @100 pF, etc.)

Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitive loads. 50 kΩ

VDD + 50 kΩ VI



Rnull

+

CL

VDD – / GND

Figure 62. Series-Resistance Circuit

48

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 63 are generated using the TLC226x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

D D D D D D

D D D D D D

Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification

Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3

VCC +

9 RSS

92

FB

10 J1

DP

VC J2

IN + 11 RD1 VAD

DC

12 C1

R2 – 53

HLIM



+

C2

6







+

VLN

+ GCM

GA

VLIM 8



RD2

54 4

91 + VLP

7

60

+ –

+ DLP

90

RO2

VB

IN –

VCC –



+

ISS

RP 2

1

DLN

EGND +



RO1

DE

5

+ VE

OUT

.SUBCKT TLC226x 1 2 3 4 5 C1 11 12 3.560E–12 C2 6 7 15.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.04E6 –30E6 30E6 30E6 –30E6 GA 6 0 11 12 47.12E–6 GCM 0 6 10 99 4.9E–9 ISS 3 10 DC 8.250E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3

RD1 60 11 21.22E3 RD2 60 12 21.22E3 R01 8 5 120 R02 7 99 120 RP 3 4 26.04E3 RSS 10 99 24.24E6 VAD 60 4 –.6 VB 9 0 DC 0 VC 3 53 DC .65 VE 54 4 DC .65 VLIM 7 8 DC 0 VLP 91 0 DC 1.4 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=281E–6 + VTO= –.065) .ENDS

Figure 63. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

49

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN PINS **

0.050 (1,27)

8

14

16

A MAX

0.197 (5,00)

0.344 (8,75)

0.394 (10,00)

A MIN

0.189 (4,80)

0.337 (8,55)

0.386 (9,80)

DIM 0.020 (0,51) 0.014 (0,35) 14

0.010 (0,25) M

8

0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM

0.157 (4,00) 0.150 (3,81)

1

Gage Plane

7 A

0.010 (0,25) 0°– 8°

0.044 (1,12) 0.016 (0,40)

Seating Plane 0.069 (1,75) MAX

0.010 (0,25) 0.004 (0,10)

0.004 (0,10) 4040047 / B 03/95

NOTES: A. B. C. D. E.

50

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

18

17

16

15

14

13

NO. OF TERMINALS **

12

19

11

20

10

A

B

MIN

MAX

MIN

MAX

20

0.342 (8,69)

0.358 (9,09)

0.307 (7,80)

0.358 (9,09)

28

0.442 (11,23)

0.458 (11,63)

0.406 (10,31)

0.458 (11,63)

21

9

22

8

44

0.640 (16,26)

0.660 (16,76)

0.495 (12,58)

0.560 (14,22)

23

7

52

0.740 (18,78)

0.761 (19,32)

0.495 (12,58)

0.560 (14,22)

24

6 68

25

5

0.938 (23,83)

0.962 (24,43)

0.850 (21,6)

0.858 (21,8)

84

1.141 (28,99)

1.165 (29,59)

1.047 (26,6)

1.063 (27,0)

B SQ A SQ

26

27

28

1

2

3

4 0.080 (2,03) 0.064 (1,63)

0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25)

0.055 (1,40) 0.045 (1,14)

0.045 (1,14) 0.035 (0,89)

0.045 (1,14) 0.035 (0,89)

0.028 (0,71) 0.022 (0,54) 0.050 (1,27)

4040140 / C 11/95 NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

51

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION J (R-GDIP-T**)

CERAMIC DUAL-IN-LINE PACKAGE

14 PIN SHOWN

PINS **

14

16

18

20

22

A MAX

0.310 (7,87)

0.310 (7,87)

0.310 (7,87)

0.310 (7,87)

0.410 (10,41)

A MIN

0.290 (7,37)

0.290 (7,37)

0.290 (7,37)

0.290 (7,37)

0.390 (9,91)

B MAX

0.785 (19,94)

0.785 (19,94)

0.910 (23,10)

0.975 (24,77)

1.100 (28,00)

B MIN

0.755 (19,18)

0.755 (19,18)

C MAX

0.280 (7,11)

0.300 (7,62)

0.300 (7,62)

0.300 (7,62)

C MIN

0.245 (6,22)

0.245 (6,22)

0.245 (6,22)

0.245 (6,22)

DIM

B 14

8

C

1

7 0.065 (1,65) 0.045 (1,14)

0.100 (2,54) 0.070 (1,78)

0.020 (0,51) MIN

0.930 (23,62) 0.388 (9,65)

A

0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN

0°– 15° 0.100 (2,54) 0.023 (0,58) 0.015 (0,38)

0.014 (0,36) 0.008 (0,20) 4040083 / B 04/95

NOTES: A. B. C. D. E.

52

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8

5

0.280 (7,11) 0.245 (6,22)

1

4 0.065 (1,65) 0.045 (1,14)

0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN

0.063 (1,60) 0.015 (0,38)

0°–15° 0.023 (0,58) 0.015 (0,38)

0.015 (0,38) 0.008 (0,20)

0.100 (2,54)

4040107 / B 04/95 NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification on press ceramic glass frit seal only Falls within MIL-STD-1835 GDIP1-T8

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

53

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PIN SHOWN PINS **

14

16

18

20

A MAX

0.775 (19,69)

0.775 (19,69)

0.920 (23.37)

0.975 (24,77)

A MIN

0.745 (18,92)

0.745 (18,92)

0.850 (21.59)

0.940 (23,88)

DIM A 16

9

0.260 (6,60) 0.240 (6,10)

1

8 0.070 (1,78) MAX

0.035 (0,89) MAX

0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN

0.100 (2,54) 0.021 (0,53) 0.015 (0,38)

0.010 (0,25) M

0°– 15° 0.010 (0,25) NOM

14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

54

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02)

8

5

0.260 (6,60) 0.240 (6,10)

1

4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37)

0.020 (0,51) MIN

0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN

0.100 (2,54) 0.021 (0,53) 0.015 (0,38)

0°– 15°

0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95

NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

55

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN 0,32 0,19

0,65 14

0,13 M

8

0,15 NOM 4,50 4,30

6,70 6,10 Gage Plane 0,25

1

7

0°– 8° 0,75 0,50

A

Seating Plane 1,20 MAX

0,10

0,10 MIN

PINS ** 8

14

16

20

24

28

A MAX

3,10

5,10

5,10

6,60

7,90

9,80

A MIN

2,90

4,90

4,90

6,40

7,70

9,60

DIM

4040064 / D 10/95 NOTES: A. B. C. D.

56

All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION U (S-GDFP-F10)

CERAMIC DUAL FLATPACK

0.250 (6,35) 0.246 (6,10)

0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27)

0.045 (1,14) 0.026 (0,66)

0.300 (7,62)

0.350 (8,89) 0.250 (6,35) 1

0.350 (8,89) 0.250 (6,35) 10

0.019 (0,48) 0.015 (0,38)

0.050 (1,27) 0.250 (6,35)

5

6

0.025 (0,64) 0.005 (0,13)

1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E.

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

57

TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001

MECHANICAL INFORMATION W (R-GDFP-F16)

CERAMIC DUAL FLATPACK Base and Seating Plane

0.285 (7,24) 0.245 (6,22)

0.006 (0,15) 0.004 (0,10) 0.085 (2,16) 0.045 (1,14)

0.045 (1,14) 0.026 (0,66) 0.305 (7,75) 0.275 (6,99)

0.355 (9,02) 0.235 (5,97) 1

0.355 (9,02) 0.235 (5,97) 16

0.019 (0,48) 0.015 (0,38)

0.050 (1,27)

0.440 (11,18) 0.371 (9,42)

0.025 (0,64) 0.015 (0,38)

8

9 1.025 (26,04) 0.745 (18,92) 4040180-3 / B 03/95

NOTES: A. B. C. D. E.

58

All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC

POST OFFICE BOX 655303

• DALLAS, TEXAS 75265

IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.