Tom Richardson On the occasion of Bob McEliece's 60th birthday

Multi-edge-type ensembles: CT. CT codes. Ping, Wu 2001 d. µ d d b ν b,d. Constraints. Variables. 0 0 0 0 1. 0 1. 1/2. 0 1 0 1 1. 1/2. 0 0 2 1 0. 1 0. 1/2. 3 0 2 0 0.
384KB taille 9 téléchargements 303 vues
Tom Richardson

On the occasion of Bob McEliece’s 60th birthday celebration

1

2

• Codes: New and improved LDPC codes. • Error Floors: The final frontier. • Turbo Equalization for noncoherent OFDM: Structural constraints.

3

1961 R. Gallager Random permutation

4

Multi-edge-type ensembles: RA

RA codes Divsalar, Jin, McEliece 1998

5

1998 Irregular LDPC

6

Multi-edge-type ensembles: IRA

IRA codes Jin, Khandekar, McEliece 2000

7

IRA + RA

8

Multi-edge-type ensembles: CT

CT codes Ping, Wu 2001

AWGNC threshold: 0.925 9

Multi-edge-type ensembles: MN

Kantor, Saad 2000

AWGNC threshold: ~ 0.95 10

IRA + RA + … = Multi-edge type LDPC codes

11

Multi Edge Type LDPC codes:

Parity check matrix perspective 2

3

6

7

6

specify row and column weights

7

2 5 22 5 2 4

Standard irregular LDPC:

3 1 3 2

6 2 3 1 3 3

1

Multi-edge type LDPC: node type = column and row clustering

11

received distribution specs. Edge type specifies row and column weights in any, possibly disconnected, rectangle. 12

Multi Edge Type LDPC codes:

Node perspective multivariate polynomial representation.

Standard irregular LDPC edge-perspective degree polynomials. λ(x), ρ (x) Density Evolution: Fl+1 = R λ( ρ (Fl) )

13

Multi Edge Type LDPC codes:

Node perspective multivariate polynomial representation.

Edge types:

x=(x1,x2,…,xk);

received types: r=(r1,r2,…,rl); Degrees:

Densities: F=(F1,F2,…,Fk) Densities: R=(R1,R2,…,Rl)

d=(d1,d2,…,dk), b=(b1,b2,…,bl) xd=Πi xidi,

rb=Πi ribi

14

Node perspective multivariate polynomial representation. ν(r,x) = Σ νb,d rb xd , Coefficients:

νb,d n µd n

µ(x) = Σ µd xd

= #variable nodes of type b,d = #check nodes of type d

where n is the blocklength

Edge equality constraints:

νxi(1,1) = µxi (1) , i=1,…,k

Received constraints:

νri(1,1) = πi ,

Code Rate:

ν (1,1) – µ (1)

i=1,…,l

15

Node perspective multivariate polynomial representation.

The multi-edge formalism can be used to specify a particular graph. The formalism is, in this sense, universal. The purpose, however, is to find good structures, i.e., ensembles.

16

Multi-edge-type ensembles: RA

RA codes Divsalar, Jin, McEliece 1998

Variables

Constraints

ν b,d

b

d

µd

d

1/q

1 0

q 0

1

1 2

1

0 1

0 2

17

Multi-edge-type ensembles: IRA

IRA codes Jin, Kandekkar, McEliece 2000 Variables

Constraints

ν b,d

b

d

µd

d

0.33821

01

3 0

0.5

8 2

0.02910

01

11 0

0.10805

01

12 0

0.02980

01

48 0

0.50000

01

0 2

AWGNC threshold: 0.963

Shannon: 0.979 18

Multi-edge-type ensembles: CT

Variables

Constraints

ν b,d

b

d

µd

d

CT codes

1/2

01

3 1 0 0 0

1/2

3 0 2 0 0

Ping, Wu 2001

1/2

10

0 0 2 1 0

1/2

0 1 0 1 1

1/2

01

0 0 0 0 1

AWGNC threshold: 0.925 19

Multi-edge-type ensembles: MN

Variables

Constraints

ν b,d

b

d

µd

d

0.45

10

2 3 0 0

0.05

1 0 2 0

0.05

10

1 4 0 0

0.45

2 0 2 0

0.5

01

0 0 2 0

0.075

0 6 0 1

0.5

01

0 0 0 1

0.05

0 7 0 1

0.375

0 2 0 1

AWGNC threshold: ~ 0.95

Kantor, Saad 2000

20

Multi-edge-type ensembles

Variables

Constraints

ν b,d

b

d

µd

d

0.5

0 1

20000

0.4

22100

0.3

0 1

03000

0.1

21200

0.2

1 0

00330

0.2

00031

0.2

0 1

00001

AWGNC threshold: ~ 0.965 21

Performance

22

Multi Edge Type LDPC codes:

Node perspective multivariate polynomial representation. λ(r,x) :=

ρ (x ) :=

νx1(r,x)

νx1(1,1) µx1(x) µx1(1)

Density Evolution:

,…,

,…,

νxk(r,x)

νxk(1,1) µxk(x)

µxk(1)

Fl+1 = λ (R, ρ (Fl))

23

Multi Edge Type LDPC codes:

Stability Perfectly decodable fixed point. F*= λ (R, ρ (F*)) When is it stable ? I.e., If F0 ≅ F* then does Fl C F* ?

24

Reduction to case F* = δ

8

Stability: Removal of Degree 1 nodes

25

Multi Edge Type LDPC codes:

Stability (Degree 1 nodes removed)

Stability Matrix:

26

Multi Edge Type LDPC codes:

Stability : Examples Standard Irregular LPDC:

λ2 B(R) ρ’(1)

Irregular RA code:

B(R)

= B(R)

If ν2,0=0

27

Error Floors

C. Di, D. Proietti, R. Urbanke, A. Shokrollahi, E. Teletar

28

Error floors on the erasure channel: Stopping sets.

29

Error floors on the erasure channel: average performance.

30

Error floors on the erasure channel: decomposition

31

Error floors on the erasure channel: average and typical performance.

32

Error floors for general channels:

Stopping sets are no longer sufficient. A generalization is required. We know what that generalization is from experiments and other considerations. Combinatorial analysis, probabilistic analysis and simulation will yield accurate predictor.

33

Error floors for general channels: Design example. AWGN channel rate 51/64 block lengths 4k

34

Error floors for general channels: Design example. AWGN channel rate 51/64 block lengths 4k

35

Error floors for general channels: Design example. AWGN channel rate 51/64 block lengths 4k

36

Turbo Equalization Hui Jin

37

• Flarion Uplink System • Design of LDPC codes in conjunction with turbo equalizer • Hardware implementation of turbo equalizer

38

• Differentially encoded QPSK • Dwell structured transmission

39

Channel Model:



ri = e si + ni 40

41

• BPSK signaling. • Unknown phase can only be 0 or with equal probability.

π,

ri = zsi + ni, z = − +

42

43

Optimized for AWGN Optimized for TE 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 f1

f2

f3

f6

f7

g3

g4

g5

g6

44

10

Frame Error Rate

10

10

10

Flarion Code Performance curves (code 640/1344)

-1

Code Code Code Code

1 1 2 2

(optimized for Gaussian) NTE TE (optimized for Turbo Equalizer) NTE TE

-2

-3

-4

-3

-2

-1

0 1 E s /N0 (dB)

2

3

4

45

Differential Encoder

46

47

Optimized for AWGN Optimized for PBTE 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 f1

f2

f3

f6

f7

g3

g4

g5

g6

48

10

Flarion Code Performance curves (code 640/1344)

-1

Code 1 (optimized for Gaussian) Code 2 (optimized for TE) Code 3 (optimzed for PBTE)

Frame Error Rate

10

10

10

-2

-3

-4

-3

-2

-1

0 1 E /N (dB) s

2

3

4

0

49

Flarion Code Performance curves (code 640/1344)

-1

10

-2

10 Frame Error Rate

Approximate MAP decision in demodulation Similar to a complex check node update.

-3

10

-4

Code 1 (optimized for Gaussian) Code 2 simplifed algorithm Code 2 optimal algorithm hardware

10

-3

-2

-1

0 1 Es/N0 (dB)

2

3

4

50

• Less than 50% complexity increase, compared with decoder alone. • Runs at over 100 MHz on Xilinx VirtexE 2000.

51

• LDPC codes design in conjunction with turbo equalizer • Hardware implemented algorithm with 1.7 dB performance gain

52