Untitled - Ovide Arino

We first recall what Ryabov calls a "special solution": DEFINITION ([6]) . A "special solution1' is a solution of (L) , defined on R , growing at most exponentially, ...
600KB taille 2 téléchargements 348 vues
Then t h e r e e x i s t s an o r d i n a r y d i f f e r e n t i a l system:

t h e s o l u t i o n s of which a r e s o l u t i o n s o f ( L ) , ( R ) Ila(t,=)ll < p

Finally, i f t = 0) 0

c

Y(t)

Rn -isomorphisms,

i s , within

(R)

u n i q u e l y determined by t h e c o n d i t i o n s

unique

(L3) :

.

Moreover, t h e system

(with

verifying

(L1), (L2)

(L3).

i s a fundamental system of s o l u t i o n s of

, then f o r every s o l u t i o n x of R~ , such t h a t :

in

and

x ( t ) = Y(t)

(L)

(R)

there exists a

(c + o ( 1 ) )

.

To prove t h e theorem, we o n l y have t o come back t o t h e o r i g i n a l r e s u l t by Ryabov. We f i r s t r e c a l l what Ryabov c a l l s a " s p e c i a l s o l u t i o n " : DEFINITION ( [ 6 ] )

on than

.

A " s p e c i a l s o l u t i o n 1 ' i s a s o l u t i o n of

(L) , defined

R , growing a t most e x p o n e n t i a l l y , with an exponent n o t g r e a t e r l/r

.

Ryabov t h e n proved: LEMMA ( [ l o ] , [ 6 ] ) .

(toyyo) i n

R

through

at

y

o

x

Assume

R"

(L1), (L2)

, there

and

(L3).

Then, f o r each

e x i s t s a unique s p e c i a l s o l u t i o n p a s s i n g

t o . The s e t o f t h e s p e c i a l s o l u t i o n s i s an n-

dimensional space. Each s p e c i a l s o l u t i o n

y(t)

s a t i s f i e s an estimate:

REMARK 2 .

The first part of this lemma means that such a system of

solutions is complete. All we have to do in order to prove the theorem is: (i) observe that a complete family of special solutions is associated to an ordinary equation in R~ ; (ii) that there is uniqueness within isomorphism; (iii) prove the asymptotic formula (end of THM). We will prove (i) , skip (ii) and go very fast on (iii) . To prove (i) , let x be a special solution. It can be expressed as:

Because of the uniqueness property stated in the lemma, we can see that, for each 0

in

terms of x(s),

[-r,01 , s in R

, x (s + 8 ) is uniquely determined in

so that x(s) + x(s+e)

defines a map G(s,e).

Because of the lemma, we have:

Using G, (5) can be written as :

Let: g(s,x)

=

L[s,G(s,-)

*x).

We then have: dx/dt = ~(t,x(t)),

which yields the first part of the theorem. Moreover:

e ?Jr= 11 ; s o , we g e t

Il!l(s,-)il < K

h a s been proved by R.D.

(L3).

The l a s t p a r t o f t h e theorem

Driver [6] u s i n g " s p e c i a l s o l ~ t i o n s . ~ ~

We t r a n s f o r m t h e e q u a t i o n u s i n g t h e r e s o l v e n t ( i n f a c t , we u s e :

Y(t) = Y ( t , O )

: x ( t ) = Y(t)

Y(t,s)

of

(R)

z(t)).

Using t h e Gronwall-type i n e q u a l i t y ( [ 1 ] , [ 3 ] ) we can s e e t h a t : (d/dt)z

is in

1 L (to,+ a ) , so t h a t

each

in

,

c

such t h a t :

4.

W"

z(t)

z

there exists a solution

+

c, t

w ,

and f o r

(and s o a s o l u t i o n

x)

CONCLUDING REMARKS

Rn.

For

system o f

r > 0

(L) -an

o.d.e.'s?

in

R~

, that

0.d.c..

0.d.e.

sub-

c o n t a i n s t h e i n f o r m a t i o n on

Why now do we c o n s i d e r a f o r m u l a t i o n i n terms

I n what way could t h i s concept be more i n t e r e s t i n g tharl

t h e one of s p e c i a l s o l u t i o n s ? be p a r t i a l .

i s an

r =0 , ( L )

for

small ( s e e ( L Z ) ) , t h e r e i s s t i l l an

0.d.e.

asymptotic behaviour. of

z

+

.

+ +

Our theorem i s a p e r t u r b a t i v e r e s u l t : in

has a l i m i t a t

The answer t o t h e s e q u e s t i o n s can o n l y

In ( [ 2 ] ) , we combined t h e

s u l t s on asymptotic i n t e g r a t i o n o f

0.d.e.

f o r m u l a t i o n with r e -

o . d . e T s t o g e t a s y m p t o t i c formulae

f o r f u n c t i o n a l d i f f e r e n t i a l systems. Another i n t e r e s t i n g f e a t u r e i s t h a t n a t u r a l simple a d j o i n t e q u a t i o n i n

(k)

p r o v i d e s u s with a

( R n ) * , which i n f a c t can be used

t o d e s c r i b e t h e l i m i t i n g behaviour o f t h e s o l u t i o n s of c i s e l y , t h e r e e x i s t s a fundamental s o l u t i o n c = l i m t++a

(where

c,x

Y*

of

(L).

(R*)

Pre-

such t h a t :

a r e a s i n t h e theorem).

On t h e o t h e r hand, t h e n o t i o n o f a "subsystem" i s s t i l l " t h e o r e t i c a l , l l i t needs much more work t o be r e a l l y u s e f u l , and

n o t a b l y t h e following q u e s t i o n can be s e t :

I s it p o s s i b l e t o g e t such

subsystems without t h e i n t e r m e d i a r y o f s p e c i a l s o l u t i o n s ?

REFERENCES [l]

Arino, 0 . and I . Gyori. Asymptotic i n t e g r a t i o n of f u n c t i o n a l d i f f e r e n t i a l systems which a r e a s y m p t o t i c a l l y autonomous.

(PubZicatims Math&matiques- Paul and Proc. of Equadiff. ,

Springer Verlag Lect

. Notes,

(1982) .

[2]

Arino, 0. and I . Gyori. Asymptotic i n t e g r a t i o n of f u n c t i o n a l d i f f e r e n t i a l systems (submitted t o Journ. of Math. Anal. and AppZ.), (1984).

[3]

Arino, 0. and I. Gyori. Gronwall-type i n e q u a l i t i e s f o r f u n c t i o n a l d i f f e r e n t i a l systems, i n Proceedings of the Conference on QuaZ&5ative Thsamy of PifferentiaZ Equations, Szeged, Hungary, August (1984)

.

[4]

Atkinson, F.V. and J . R . Haddock. C r i t e r i a f o r aysmptotic constancy o f s o l u t i o n s o f f u n c t i o n a l d i f f e r e n t i a l e q u a t i o n s . J. Math. Anal. A p p Z . , 91(1983), 410-423.

[5]

Cooke, K.L. Asymptotic t h e o r y f o r t h e d e l a y d i f f e r e n t i a l J. Math. Anal. A p p l . , 19(1967), e q u a t i o n : du/dt = - a * u ( t - r ( t ) ) 160-173.

[6]

D r i v e r , D. Linear d i f f e r e n t i a l systems with small d e l a y s , J. D. E . , 21 (1976), 147-167.

[7]

Gyori, I . On e x i s t e n c e of t h e l i m i t s of s o l u t i o n s o f f u n c t i o n a l d i f f e r e n t i a l e q u a t i o n s . CoZZ. Math. Soc. J. BoZyai. 30, QuaZ. Th. of D i f f . Eq., North Holland, (1979)

[8]

Haddock, J . R . and R. Sacker. S t a b i l i t y and asymptotic i n t e g r a t i o n f o r c e r t a i n l i n e a r systems o f f u n c t i o n a l d i f f e r e n t i a l e q u a t i o n s . J. Math. Anal. ADDZ., 76 (1980), 328-338.

[9]

Hartman, P . and A. Wintner. Asymptotic i n t e g r a t i o n o f l i n e a r d i f f e r e n t i a l e q u a t i o n s . h e r . J. Math., 77(1955), 45-86.

[lo]

.

Ryabov, J u . A. C e r t a i n asymptotic p r o p e r t i e s o f l i n e a r systems with small time l a g ( i n Russian). Tmdy Sem. Teor. D i f f . Druzby Narodov P. Lumwrrby, 3(1965), 153-165.

[ll]

Slater, G. L.

The differential-difference equation dw/ds , Proc. of Roy. Soc. of Edinburgh,

g(s) [w(s-1) - w(s)] 18A(1977), 41-55.

=