Yannick Champion - amgme

Cold compaction. Sintering under. Reductive atmosphere. Surface metal oxide. Metallic grain boundary. Fabrication at nanoscale: particles assembling. 50 nm.
3MB taille 16 téléchargements 442 vues
Yannick Champion Directeur de recherche CNRS

Institut de Chimie et des Matériaux Paris-Est CNRS-Université Paris 12 6-8 rue Henri Dunant, Thiais, cedex France

Présentation d’activités de reherche expérimentales Dans le domaine de la chimie métallurgique. • Synthétiser des phases pour de nouvelles propriétés • Caractériser les phases et leur comportement exemple • Les verres métalliques • Nanopoudres et nanostructures

Crystalline / amorphous Crystalline structure

Atomic:

Ordering

amorphous structure

Disordering

Microstructure: Heterogeneous grain + grain boundaries

Homogenous random atomic distribution

Composition:

Complex (3-5 atoms)

Simple

25 Å Transmission electron microscopy high resolution image. Al

Transmission electron microscopy high resolution image. FeCoZrBCu base

How to form amorphous phase In the solidification process, avoiding homogenous nucleation by rapide cooling. No nucleation High viscosity Reduced atomic mobility Supercooled liquid glass

liquid

Nucleation

Empirical rules to form amorphous phase

Inoue, Acta Mat, 2000 • Alloy should be based on multicomponent system (at least 3 elements). • additions should show significant atomic size mismatch exceeding 12%. • main alloying elements should show negative heats of mixing • Low melting eutectic

Amorphous thickness Cooling rate :

dT Tm − Tg ≈ τ dt

r2

r 2C τ≈ ≈ , κ K κ the thermal diffusivity, K the thermal conductivity, C the heat capacity

rc

Critical cooling rate : R c = rc =

Crc2

K (Tm − Tg ) CRc

Rc ∝ Tx − Tg and Rc ∝

rc

K(Tm − Tg )

Tg Tm

Tx the crystallisation temperature

[a.u.]

(DSC)

Tg

(DTA)

Tx

heat transfer

Tm

egzo

500

1000

[oC]

Cooling rate

Liquid 10-2 Supercooled liquid

ordinary amorphous alloys Crystalline alloys

Tg

Rc = 106 K/s

BMG 1012

Rc = 0.033 - 1 K/s Conventional crystalline alloys

10-5

10-4

10-2 100 Time (s)

102

104

105

Viscosity (Pa.s)

Température (K)

Tm

M. Telford, Mater. Today mars 2004

Radio frequency melting equipements developped at CECM Raw materials preparation and treatment

High purity metal

Arc melting

Water cooled cooper earth melting zone

Sectorised copper crucible for melting and casting from 30 to 200 g of liquid alloy.

Thick specimens

r.f. levitation melting for quenching in copper crucible Cooling rate: 1-10 s-1

Thin specimens and ribbons

Twin Roll Casting

103-104s-1

106s-1 Zr base amorphous 30 X4X 0.035 cm « chill block melt spinning-planar flow casting

1 cm

Melt spun ribbon and ingot from stepped copper mould from ZrTiNiCu alloy

b

a

Zr base BMG

thermocouples

oven sample compression platens

Shear banding

Fan, APL 2002

Superplasticity

Pd40Ni40P20 1260%, 620K, 1.7 10-1 s-1 Inoue et al, Scripta Mat. 1998 La55Al25Ni20 20000%, 500K Nieh et al, Scripta Mat. 2006

M. Telford, Mater. Today mars 2004

10 times springier than crystalline steel

Liquidmetal Technologies in Lake Forest, California

Electronic casing High strength

Medical application Bio campatibility High strength/weight Wear resistance Net shape casting Implants

Tools

M. Telford, Mater. Today mars 2004

Nanopoudres

Cryogenic liquid

Calefaction layer Short distance and strong temperature gradient Molten metal

Particle quenching

Coalescent coagulation

Condensation

Cryo-melting of 40 g of Cu 1.4 1.3

Yield (g/mn)

1.2 1.1

Position of drop in r.f. inductor

1

50 nm

0.9 0.8 45

50

55

60

65

70

Apparente power, P=UI (kW)

Production yield (evaporation rate) as a function of the apparent power supplied to the r.f. generator

Particles size and agglomeration

Fabrication at nanoscale: particles assembling

Surface metal oxide

Loose nanopowder

Metallic grain boundary

Cold compaction

Sintering under Reductive atmosphere

Powder metallurgy processing

50 nm TEM: copper

Grain size: 90 nm Density 99% High angle grain boundaries

Extrusion densificatio

Copper

Average size 40 nm, log-normale distribution

2 nm Cu2O 0,1

Cu

Intensité (U.A.)

Cu

0,05

Cu 2 O

HREM image

A 0

B 40

42

44

46

48

50

52

54

2θ (°)

X-rays diffraction (A) before and (B) after sintering under hydrogen

Hydrogen dilatometry Heat rate: 0.5K.min-1 2 60

0

240°C -6

100°C 135°C

-8

150°C

Coherence length of Cuprite (nm)

Shrinkage (%)

-4

10

50

5

45

0

40 35

-10

30

-12

0

0

50

100 150 Temperature (°C)

200

4.39 mm

H = 5.46 mm

250

50

100 150 Temperature (°C)

200

250

Average size of Cu nanocrystals (nm)

55

-2

ε&=5.10−6s −1

Brigth field - STEM (FEI)

Mg-K

O-K

Pd-K

FeNi Transmission electron microscopy Image Filtering (EELS)

39 nm 75 nm 24 nm

Chemical map obtained by energy filtering Oxygen

Fe/Ni